16 research outputs found

    Acceleration and Deceleration in Curvature Induced Phantom Model of the Late and Future Universe, Cosmic Collapse as Well as its Quantum Escape

    Full text link
    Here, cosmology of the late and future universe is obtained from f(R)f(R)-gravity with non-linear curvature terms R2R^2 and R3R^3 (RR being the Ricci scalar curvature). It is different from f(R)f(R)-dark enrgy models, where non-linear curvature terms are taken as gravitational alternative of dark energy. In the present model, neither linear nor no-linear curvature terms are taken as dark energy. Rather, dark energy terms are induced by curvature terms in the Friedmann equation derived from f(R)f(R)-gravitational equations. It has advantage over f(R)f(R)- dark energy models in the sense that the present model satisfies WMAP results and expands as ∌t2/3\sim t^{2/3} during matter-dominance. So, it does not have problems due to which f(R)f(R)-dark energy models are criticized. Curvature-induced dark energy, obtained here, mimics phantom. Different phases of this model, including acceleration and deceleration during phantom phase, are investigated here.It is found that expansion of the universe will stop at the age (3.87t0+694.4kyr)(3.87 t_0 + 694.4 {\rm kyr}) (t0t_0 being the present age of the universe) and after this epoch, it will contract and collapse by the time (336.87t0+694.4kyr)(336.87 t_0 + 694.4 {\rm kyr}). Further,it is shown that universe will escape predicted collapse (obtained using classical mechanics) on making quantum gravity corrections relevant near collapse time due to extremely high energy density and large curvature analogous to the state of very early universe. Interestingly, cosmological constant is also induced here, which is very small in classical domain, but very high in quantum domain.Comment: 33 page

    Reionization Constraints on the Contribution of Primordial Compact Objects to Dark Matter

    Get PDF
    Many lines of evidence suggest that nonbaryonic dark matter constitutes roughly 30% of the critical closure density, but the composition of this dark matter is unknown. One class of candidates for the dark matter is compact objects formed in the early universe, with typical masses M between 0.1 and 1 solar masses to correspond to the mass scale of objects found with microlensing observing projects. Specific candidates of this type include black holes formed at the epoch of the QCD phase transition, quark stars, and boson stars. Here we show that accretion onto these objects produces substantial ionization in the early universe, with an optical depth to Thomson scattering out to z=1100 of approximately tau=2-4 [f_CO\epsilon_{-1}(M/Msun)]^{1/2} (H_0/65)^{-1}, where \epsilon_{-1} is the accretion efficiency \epsilon\equiv L/{\dot M}c^2 divided by 0.1 and f_CO is the fraction of matter in the compact objects. The current upper limit to the scattering optical depth, based on the anisotropy of the microwave background, is approximately 0.4. Therefore, if accretion onto these objects is relatively efficient, they cannot be the main component of nonbaryonic dark matter.Comment: 12 pages including one figure, uses aaspp4, submitted to Ap

    Probing Early Structure Formation with Far-Infrared Background Correlations

    Full text link
    The large-scale structure of high-redshift galaxies produces correlated anisotropy in the far-infrared background (FIRB). In regions of the sky where the thermal emission from Galactic dust is well below average, these high-redshift correlations may be the most significant source of angular fluctuation power over a wide range of angular scales, from about 7' to about 3 degrees, and frequencies, from about 400 to about 1000 GHz. The strength of this signal should allow detailed studies of the statistics of the FIRB fluctuations, including the shape of the angular power spectrum at a given frequency and the degree of coherence between FIRB maps at different frequencies. The FIRB correlations depend upon and hence constrain the redshift-dependent spectral energy distributions, number counts, and clustering bias of the galaxies and active nuclei that contribute to the background. We quantify the accuracy to which Planck and a newly proposed balloon-borne mission EDGE could constrain models of the high-redshift universe through the measurement of FIRB fluctuations. We conclude that the average bias of high-redshift galaxies could be measured to an accuracy of less than approximately 1% or, for example, separated into 4 redshift bins with about 10% accuracy.Comment: 15 emulateapj pages, including 9 figures, submitted to Ap

    Quantum driven Bounce of the future Universe

    Full text link
    It is demonstrated that due to back-reaction of quantum effects, expansion of the universe stops at its maximum and takes a turnaround. Later on, it contracts to a very small size in finite future time. This phenomenon is followed by a " bounce" with re-birth of an exponentially expanding non-singular universe

    A new standard model of the universe

    Full text link
    Analytical properties of a flat universe with cold matter and vacuum energy is presented.Comment: 10 pages, 11 figure

    Curvature Inspired Cosmological Scenario

    Full text link
    Using modified gravity with non-linear terms of curvature, R2R^2 and R(r+2)R^{(r +2)} (with rr being the positive real number and RR being the scalar curvature), cosmological scenario,beginning at the Planck scale, is obtained. Here, a unified picture of cosmology is obtained from f(R)−f(R)- gravity. In this scenario, universe begins with power-law inflation, followed by deceleration and acceleration in the late universe as well as possible collapse of the universe in future. It is different from f(R)−f(R)- dark energy models with non-linear curvature terms assumed as dark energy. Here, dark energy terms are induced by linear as well as non-linear terms of curvature in Friedmann equation being derived from modified gravity.It is also interesting to see that, in this model, dark radiation and dark matter terms emerge spontaneously from the gravitational sector. It is found that dark energy, obtained here, behaves as quintessence in the early universe and phantom in the late universe. Moreover, analogous to brane-tension in brane-gravity inspired Friedmann equation, a tension term λ\lambda arises here being called as cosmic tension. It is found that, in the late universe, Friedmann equation (obtained here) contains a term −ρ2/2λ- \rho^2/2\lambda (ρ\rho being the phantom energy density) analogous to a similar term in Friedmann equation with loop quantum effects, if λ>0\lambda > 0 and brane-gravity correction when λ<0.\lambda < 0.Comment: 19 Pages. To appear in Int. J. Thro. Phy

    Can inflationary models of cosmic perturbations evade the secondary oscillation test?

    Get PDF
    We consider the consequences of an observed Cosmic Microwave Background (CMB) temperature anisotropy spectrum containing no secondary oscillations. While such a spectrum is generally considered to be a robust signature of active structure formation, we show that such a spectrum {\em can} be produced by (very unusual) inflationary models or other passive evolution models. However, we show that for all these passive models the characteristic oscillations would show up in other observable spectra. Our work shows that when CMB polarization and matter power spectra are taken into account secondary oscillations are indeed a signature of even these very exotic passive models. We construct a measure of the observability of secondary oscillations in a given experiment, and show that even with foregrounds both the MAP and \pk satellites should be able to distinguish between models with and without oscillations. Thus we conclude that inflationary and other passive models can {\em not} evade the secondary oscillation test.Comment: Final version accepted for publication in PRD. Minor improvements have been made to the discussion and new data has been included. The conclusions are unchagne

    Slepton and Neutralino/Chargino Coannihilations in MSSM

    Get PDF
    Within the low-energy effective Minimal Supersymmetric extension of Standard Model (effMSSM) we calculated the neutralino relic density taking into account slepton-neutralino and neutralino-chargino/neutralino coannihilation channels. We performed comparative study of these channels and obtained that both of them give sizable contributions to the reduction of the relic density. Due to these coannihilation processes some models (mostly with large neutralino masses) enter into the cosmologically interesting region for relic density, but other models leave this region. Nevertheless, in general, the predictions for direct and indirect dark matter detection rates are not strongly affected by these coannihilation channels in the effMSSM.Comment: 12 pages, 9 figures, revte

    Inflationary perturbations from a potential with a step

    Get PDF
    We use a numerical code to compute the density perturbations generated during an inflationary epoch which includes a spontaneous symmetry breaking phase transition. A sharp step in the inflaton potential generates kk dependent oscillations in the spectrum of primordial density perturbations. The amplitude and extent in wavenumber of these oscillations depends on both the magnitude and gradient of the step in the inflaton potential. We show that observations of the cosmic microwave background anisotropy place strong constraints on the step parameters.Comment: 6 pages, Revtex - v2. reference adde

    Bounds on the possible evolution of the Gravitational Constant from Cosmological Type-Ia Supernovae

    Get PDF
    Recent high-redshift Type Ia supernovae results can be used to set new bounds on a possible variation of the gravitational constant GG. If the local value of GG at the space-time location of distant supernovae is different, it would change both the kinetic energy release and the amount of 56^{56}Ni synthesized in the supernova outburst. Both effects are related to a change in the Chandrasekhar mass MCh∝G−3/2M_{Ch} \propto G^{-3/2}. In addition, the integrated variation of GG with time would also affect the cosmic evolution and therefore the luminosity distance relation. We show that the later effect in the magnitudes of Type Ia supernovae is typically several times smaller than the change produced by the corresponding variation of the Chandrasekhar mass. We investigate in a consistent way how a varying GG could modify the Hubble diagram of Type Ia supernovae and how these results can be used to set upper bounds to a hypothetical variation of GG. We find G/G_0 \la 1.1 and G'/G \la 10^{-11} yr^{-1} at redshifts z≃0.5z\simeq 0.5. These new bounds extend the currently available constrains on the evolution of GG all the way from solar and stellar distances to typical scales of Gpc/Gyr, i.e. by more than 15 orders of magnitudes in time and distance.Comment: 9 pages, 4 figures, Phys. Rev. D. in pres
    corecore