2 research outputs found

    Electronic Descriptors for Supervised Spectroscopic Predictions

    Get PDF
    Spectroscopic properties of molecules holds great importance for the description of the molecular response under the effect of an UV/Vis electromagnetic radiation. Computationally expensive ab initio (e.g. MultiConfigurational SCF, Coupled Cluster) or TDDFT methods are commonly used by the quantum chemistry community to compute these properties. In this work, we propose a (supervised) Machine Learning approach to model the absorption spectra of organic molecules. Several supervised ML methods have been tested such as Kernel Ridge Regression (KRR), Multiperceptron Neural Networs (MLP) and Convolutional Neural Networks. The use of only geometrical descriptors (e.g. Coulomb Matrix) proved to be insufficient for an accurate training. Inspired on the TDDFT theory, we propose to use a set of electronic descriptors obtained from low-cost DFT methods: orbital energy differences, transition dipole moment between occupied and unoccupied Kohn-Sham orbitals and charge-transfer character of mono-excitations. We demonstrate that with this electronic descriptors and the use of Neural Networks we can predict not only a density of excited states, but also getting very good estimation of the absorption spectrum and charge-transfer character of the electronic excited states, reaching results close to the chemical accuracy (~2 kcal/mol or ~0.1eV)

    A basic electro-topological descriptor for the prediction of organic molecule geometries by simple machine learning

    Get PDF
    This paper proposes a machine learning (ML) method to predict stable molecular geometries from their chemical composition. The method is useful for generating molecular conformations which may serve as initial geometries for saving time during expensive structure optimizations by quantum mechanical calculations of large molecules. Conformations are found by predicting the local arrangement around each atom in the molecule after trained from a database of previously optimized small molecules. It works by dividing each molecule in the database into minimal building blocks of different type. The algorithm is then trained to predict bond lengths and angles for each type of building block using an electro-topological fingerprint as descriptor. A conformation is then generated by joining the predicted blocks. Our model is able to give promising results for optimized molecular geometries from the basic knowledge of the chemical formula and connectivity. The method trends to reproduce interatomic distances within test blocks with RMSD under 0.05
    corecore