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Abstract

This paper proposes a machine learning (ML) method to predict stable molecular geome-

tries from their chemical composition. The method is useful for generating molecular con-

formations which may serve as initial geometries for saving time during expensive structure

optimizations by quantum mechanical calculations of large molecules. Conformations are

found by predicting the local arrangement around each atom in the molecule after trained from

a database of previously optimized small molecules. It works by dividing each molecule in the
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database into minimal building blocks of different type. The algorithm is then trained to predict

bond lengths and angles for each type of building block using an electro-topological fingerprint

as descriptor. A conformation is then generated by joining the predicted blocks. Our model is

able to give promising results for optimized molecular geometries from the basic knowledge of

the chemical formula and connectivity. The method trends to reproduce interatomic distances

within test blocks with RMSD under 0.05 Å.

1 Introduction
This work assesses the problem of generating reliable conformers of molecules from proposed

chemical compositions. Realistic initial bond lengths and angles are essential for efficient geom-

etry optimizations. They are normally the first step of the usual computational workflow of sys-

tematic variations of the atomic coordinates inside a molecule and the calculation of the potential

energy and forces of the system in order to find a minimum value for the potential energy, which

indicates a theoretically optimized conformation. Moreover, approximate and reliable molecular

geometries serve for many modelling and process simulation purposes from docking to Molecular

Dynamics.

The function combining all possible variations of the geometry and the potential energy forms

a high-dimensional surface and it is the well known potential energy surface (PES). All possi-

ble conformers for a given compound are comprehended as minima in the appropriate PES. Two

processes are required in order to obtain the model of the conformer with the lowest potential en-

ergy of a given molecule: (1) a procedure to attain its corresponding and plausible PES and (2) a

method to navigate it to search for minima. Procedures to find PES’s and then computing poten-

tial energies can vary in efficiency depending on several factors, and mostly the number of atoms

of the compound. Options exist from the easily computed empirical force fields based on clas-

sical considerations of bodies in a molecule,1,2 passing fast quantum mechanical semi-empirical

calculations being parameterised for specific scenarios,3 to more general and reliable but compu-

tationally expensive ab-initio and DFT calculations.4 The method to navigate the PES can also be

computationally expensive depending on how fast the global minimum can be found.5 Obviously,
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if the initial choice of a guess conformation is near to the final optimized structure, the correspnd-

ing PES’s minimum will be faster reached. This is crucial for accurate geometry optimizations of

large molecules.

Machine learning (ML) has been recently used in a variety of topics inside the field of quantum

mechanics.6–37 For molecular geometry optimizations, progress has been made mostly by using

neural networks to parameterise classical force fields.38,39

The proposal made in this work is to use ML, and specifically the Kernel Ridge Regression al-

gorithm, for predicting molecular conformations by producing the local arrangement of each atom

belonging to a molecule. It can be achieved by using a large and confident database of optimised

small molecules40 as a source for both the training and testing sets. For this purpose, certain molec-

ular structural blocks are characterised and defined by an electro-topological descriptor18,41 from

the structures of the previously optimised molecules. Blocks are then reconstructed by applying

ML tools. Using the ETKDG42–44 (Experimental Torsion Knowledge Distance Geometry) present

in RDKit45 with a new ab-initio torsion angle database, we join all predicted blocks to produce the

desired molecular structures with reasonable reliability. Results promise fast and confident predic-

tions of molecular geometries and conformations from their formulas taken as structural graphs.

2 Learning data
The database used in this work is part of a larger one46,47 of quantum PES’s minima geometries

of small organic molecules containing up to 8 C, O, N and/or F atoms. The optimised geometries

of this database are reported to be found using DFT/B3LYP48 with the 6-31G(2df,p) basis set as

a commonly accepted reliable PES. We will refer to this database as 8CONF. The size of this

resulting database subset is 21k molecules.40

To facilitate predictions based on this data, we seek a representation which minimizes the

amount of redundant information in the learning set, and also could group together similar kinds

of data.

First, each molecule is split into blocks. A block is the main building part of our model, and

it is characterised by: (1) a central atom with more than one bond and (2) the first neighbors
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of such central atom. Figure 1 shows a block decomposition for an example molecule from the

8CONF database. Note that each atom can normally be included in multiple blocks: the block

centered around itself as well as each of the blocks surrounding its neighboring atoms. Atoms with

only one neighbor are not considered to define a block. Blocks therefore have from two to four

neighboring atoms in the selected molecular sets where all atoms belong to the first and second

rows of the periodic table.

1
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4
H

5
H

6
H

2
C

7
H

8
H

3
C

9
H

10
H

11
H

Figure 1: Block decomposition for the molecule C3H8. Each C atom is bonded to multiple atoms
and hence defines a block. The molecule can therefore be divided in 3 blocks, two of which (for
atoms 1 and 3) belong to the same block-class. In each block we have redundant atoms to indicate
where blocks join together.

A unique Cartesian representation is not well suited for predictions because coordinate values

depend on the chosen reference center. Instead, we represent local coordinates within a block by 1)

subtracting the molecular Cartesian coordinates of the central atom position in that block to define

it as the local coordinate origin, and 2) computing the matrix B of scalar products ai · a j between

each pair (i, j) of coordinates of local position vectors corresponding to the non-central atoms in

the block. This matrix is the feature we use for training and predictions.

The matrix B of scalar products is symmetric and at most 4× 4 in size, and therefore has up

to ten unique degrees of freedom. B contains enough information to rebuild the set of molec-

ular Cartesian coordinates (see Appendix 8.1) for a block except for translations, rotations, and

chirality, with which the matrix is invariant.

The non-central atoms in a block have no natural ordering. Hence a way must be chosen to

assign an index i to each of them with a minimum of ambiguity for ML training and testing. To
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this end we define an equivalence relation for the set of all blocks, i.e., each block belongs to a

single, specific equivalence class or block-class. The ML algorithm is then independently trained

for each block-class.

Two blocks belong to the same class if 1) the species of the central atom in each block is the

same, 2) the species of each neighboring atom is the same (some ambiguity is solved by sorting by

atomic numbers) and 3) the arrangement of the atoms in space is the same, i.e. either tetrahedral

(TH), triangular (TR) or linear (L) .

The definition of block-classes can be applied with different levels of restrictions. As a result,

the number of different block-classes can vary, as blocks with the same atoms can appear in very

different environments.

We denote a block-class by a series of chemical symbols followed by certain indicators of

spatial configurations when necessary. The first symbol is that of the central atom, followed by the

symbols of the neighboring atoms ordered with higher atomic numbers first. Figure 2 shows the

distribution of blocks inside the database.
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Figure 2: Distribution of block-classes within all molecules in the database. A few common and
uncommon block-classes as O-H-H and C-O-H-H are referred.

When choosing the definition of block-classes there is a tradeoff: We can make predictions

easier by maximizing the amount of chemical knowledge which defines a block. It can be achieved

by dividing the blocks into a large number of classes each of which contains very similar blocks.
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However doing so also decreases the size of the learning sets, resulting in block-classes with few

or no members. In general block-classes must be defined in such a way to get neither too many nor

too few.

3 Descriptors
To complete our learning data, a property is required that can correlate with the desired fea-

ture. This property is named as a descriptor or fingerprint. In this case, desired features are the

scalar products of a block being directly related to the pursued molecular geometry predictions.

Descriptors needs to fulfill a number of required characteristics such as: (1) easiness to establish

or compute, (2) good representability and (3) low dimensionality.49 We took the so-called electro-

topological18,41 state index (e-state), which is a combination of both electronic and topological

characteristics of atoms in a molecule.

If Zv is the number of valence electrons of a certain element and h the number of bonded

hydrogen atoms according to the position in a molecule, then δ v could be defined as (Zv−h), the

count of valence electrons of a certain atom left for being engaged in the skeleton of a molecule.

Similarly, δ could be defined as the count of engaged σ electrons (σ −h). Then, I can be defined

as the intrinsic state value of an atom in a molecule, given by I = δ v+1
δ

. It gets related to the

backbone valence of an atom other than Hydrogen.

Then, the e-state to relate bonded atoms with their positions in a molecule can be taken as

S = I +∆ I. It combines the previously defined intrinsic state value I and a certain ∆ I = ∑
N
j=1

Ii+I j

r2
i, j

where ri, j is a rough expression of distances between atoms i and j given by the count of atoms in

the shortest path between them, including themselves. ∆ I relates the intrinsic state value with the

bonded environment. For each atom we use a vector of e-state composed by [I,∆ I0,∆ In], where

∆ I0 are the contributions of the first neighbours and ∆ In are the contributions of more distant

neighbours. The choice of this descriptor fulfill to a fine degree all our desired characteristics.

Figure 3 shows the distribution of e-state values of some elements in our database.
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Figure 3: Distribution of e-state values for some atoms species present in our database.

4 Learning method
The kernel ridge regression (KRR) formulation proposed by Ramakrishnan, R. et al.50 is our

selected learning method. It have been tested with success in other machine learning/Quantum

Mechanical applications.40,50 It serves to provide a given property of any query molecule as a

linear combination of similarity measures (as ”distances”) between the query’s property and those

of a finite set of training points. For the tests we randomly selected 450 molecules from 8CONF

(C from now on). The rest of the molecules were chosen as the training set (T form now on).

Our query’s property is the scalar product matrix obtained as the result of applying the trans-

formation B = XXT to each block, where X′s are the nonzero position vectors resulting after a

translation of the central atom of a block to the origin of coordinates. The KRR method needs

training to grasp correlation between the descriptor and the property, and T was used for that. Let

R be the scalar product tensor of all blocks inside a block-class in the T. In matrix notation the

training process can be defined as:

R = (K+λ I)C (1)

where C represents the coefficients to be computed, Ki j = K(|di− d j|) = exp(− |di−d j|
α

) are the

kernel terms as calculated by using L1 norm distances | · | between the descriptors d and α is a

regularization parameter to be commented below. From solving eq. 1, we obtain the coefficients

C, used to get the prediction P by:
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P = DC (2)

where D is the matrix of distances between descriptors d of known j learning points and the new i

points computed using K(− |di∈new−d j∈known|
α

).

The KRR method depends on two so-called hyper-parameters: λ to control the regularization

factor of the kernel K, and α which controls the radius of inclusion/similarity for the kernel func-

tion. Both have a tremendous impact on the process behaviour and the best combination for each

application needs to be previously found. For this purpose we conduct a grid optimization for each

block-class: using a linear distribution of 85 values of α in the range [10−3,3000] and a linear

distribution of 25 values of λ in the range [10−3,1]. Some blocks-class found their minimum at

α = 2500. This behaviour came from the fact that KRR gives the same weight to all blocks in

a certain block-class as it needs all possible information to produce the best results. Most blocks

require less data because they have a small deviation in their scalar product values. The values of

λ behave as a compensation for how far from the optimum value the α hyper-parameter is. But

it can not correct by itself the deviation in the Root Mean Squared Distance (RMSD) produced

by wrong α values. As soon α move closer to the optimum value, λ lose his influence as long as

the values stays in the range (0,1). However, the values of α = 10 and λ = 0.9 resulted from T

provided an appropriate trend of improvement of the RMSD for all block-classes. Figure 4 shows

some results of this optimisation.

A new set of Cartesian coordinates can be predicted with our algorithm as outlined below.

Scheme 1 shows the flow diagram. A SMILES51 representation of the molecule is taken as input.

It is then analyzed to extract connectivity, the blocks and their associated classes. The correspond-

ing e-states are then computed. The learning data-set is built by using the block-classes to compute

the scalar product and the e-states in order to train the KRR algorithm. The newly parameterized

KRR is then used to predict each scalar product. Finally, the blocks are reconstructed again from
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Figure 4: Summary of the KRR’s α and λ hyper-parameter optimizations. The background image
shows the RMSD value for all blocks-class by each combination of the hyper-parameter α,λ .
The color scale shows (on the right) in dark blue the found RMSD minimum. In the bottom
two examples of hyper-surface formed with the hyper-parameters and log(RMSD) for visibility
purposes. A black dot (.) marks the minimum.

the scalar product predictions to a Cartesian coordinate output.52,53 (The formulation used to re-

construct from scalar products to Cartesian coordinates is presented as an Appendix)

5 Joining blocks.
The RDKit45 code was modified for the purpose of joining blocks. Geometry reconstruction

by this kit implements the ETKDG42–44 (Experimental Torsion Knowledge Distance Geometry)

algorithm, which depends on a data base of torsion angles extracted from other sources, mostly

experimental data. Using the same approach proposed by Scharfer, C.; Schulz-Gasch, T., et al.42

we extracted a new torsion angle data base from the ground 8CONF. This newly modified ETKDG

(Theoretical-Torsion Knowledge Distance Geometry and Machine Learning, TTKDG-ML from

now on) was used to produce reasonable conformer geometries with the input of predicted ML

blocks.
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Molecule Codification(e.g. SMILES)

Construct connectivity

Splitting in blocks-class
based on connectivity

Last block-class?
Finding similar
block-class in T

Computing the scalar
product for T

Training the parameterized
KRR

Predicting scalar product
of the current block

Constructing Cartesian coordinates
from the predicted scalar product

No

Yes

Scheme 1: Flow diagram for the prediction of a new coming molecule representation, from which
the algorithm can extracts connectivity (e.g. codified by SMILES), selects the necessary data from
the training set T to train the KRR method and produces blocks Cartesian coordinate.

6 Results and discussions
Two experiments were performed with the C testing set. The first consists on block’s predic-

tion. Such control group was divided in block-classes to predict all scalar products followed by the

reconstruction of their coordinates. Values of terms in the scalar product matrices B are obtained

individually as each one gives a specific information. The diagonal describes bond lengths and

off-diagonal terms provide information on angles. The first attempt to predict vectors, such as the

upper triangular part of a matrix, resulted problematic, mostly because KRR does not particularize

each unique component of the matrix and distribute the errors among all values.

Results of this computing experiment appear in Figure 5. RMSD histograms show how good

the prediction/reconstruction of blocks really is, with most block-classes showing errors under 0.05

Å. However, methods must be also evaluated by their worst cases as some block-classes rose them

to around 0.3 Å. Among the highest RMSD’s values, two different kinds of problematic blocks are
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found: those belonging to a group on which there are not enough data to properly train the KRR

algorithm (e.g. N-N-N-H with only 7 occurrences) and those belonging to molecules where the

blocks are located inside rings that tend to distort the bond lengths and angles (e.g. C-C-C-C-C

which is a very abundant block-class with multiple combinations).
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Figure 5: a) Histograms with the mean RMSD distribution for the block-classes present in the
450 molecules of C. b) Details of block-classes where those with RMSD errors above 0.3 Å are
explicit. Each color identify a block-class present in the test group C.

The second experiment with the C testing set involved the complete rebuilding of the molecules.

After predicting the blocks and reconstructing the coordinates, TTKDG-ML procedure was fed

with the distance matrices of each block. Some restrictions were put in place in the form of an

arbitrary high number (the decimal value 10 was used) to be interpreted as a weight by the algo-

rithm. So, the better conformers were left within those non modifying the predicted distances by
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the KRR method. The best is selected by the minimun RMSD value.
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Figure 6: The first row (from the top) shows two histograms with the EMT (plot A) energies values
and RMSD’s (plot B) obtained after the complete reconstruction of molecules contained in the test-
set C. The similarities of the histogram shapes are noticeable as the EMT express bigger energy
values when molecular assembling is more complex. As points of reference, the second row shows
the EMT energy of the original molecules as present in the test-set C (plot C) to be compared with
those in (plot A). The RMSD’s (plot D) between original molecules present in test-set C and their
conformers obtained by the ETKDG in RDkit show very encouraging results.

Histograms comparing both RMSD results and potential energy calculations using a simple

Effective Medium Theory (EMT)54,55 for the 450 molecules of the test-set are shown in Figure 6.

This method consists of an expression derived for obtaining a value related with the total energy of

a system of interacting atoms. It is based on an ansatz for the total electron density of the system

as a superposition of atom densities taken from calculations for the atoms embedded in a homoge-

neous electron gas. We use these energy values here to illustrate molecular complexity compared

with total RMSD predictions. As EMT was developed only for solids and not for molecules, the

resulting values of energy must be only taken as just a reference. It can be realized that there are
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eight molecules from the test-set on which the TTKDG does not perform well. It must be origi-

nated in the fact that they contain one or more blocks with poor prediction results (See Figure 5)

such as N-C-C-C.Tr and C-C-C-C-C.Td. The results show that the proposed TTKDG-ML performs

better than the original ETKDG implemeted in RDkit (See Figure 6 B and D).

7 Conclusions
To predict accurate geometries of molecules is a complex problem able to be multiple ap-

proached. A possible solution is described here by using a machine learning tool based on a

Kernel Ridge Regression routine. The described procedure departing from bonded atom blocks

results in a very flexible and easy-to-expand way to describe the canonical geometry of an atom

in a molecule and its environment. The descriptor used showed a very good correlation with bond

distances and angles when the coordinates were transformed into scalar products. RMSD values

obtained from the experiments performed on blocks support our decision on this kind of descrip-

tors and validate the block structure. To solve most of the problematic block predictions will be

required to add more related training data because the involved atoms in such blocks are rare in

common molecules and therefore scarce in the training set. For those atoms belonging to rings, a

better data treatment could be a solution. But this needs to be exercised with caution, because too

much pruning of the data base could lead to over-fitting the KRR method results.

For approaching the final purpose of getting a complete machine learning method, the selected

descriptor was tested for torsion angles. It completely failed. The symmetries involved when join-

ing two blocks were very difficult to grasp by the e-state with the only use of the KRR algorithm.

Even the selection of the correct torsion angle for the learning process proved to be non-trivial.

Several difficulties were faced in this area especially with linear carbon chains where the defini-

tion rules resulted to be ambiguous. Nevertheless, the TTKDG-ML from an ab-initio database

proved to provide very consistent conformers, i.e. those related to extreme torsion angles. The

used weights helped to maintain the obtained results by the KRR method.

All optimized geometries used can be downloaded from http://www.quantum-machine.

org/datasets/,
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8 Appendix

8.1 Scalar product formulations and reconstruction

For the sake of argument clarity, tetravalent blocks are taken here as an example for the scalar prod-

uct formulation. Each block has five atoms, or a total of 15 coordinates. Rotations and translations

account for six degrees of freedom (DOF’s), leaving nine of them to consider.

Translations were automatically eliminated by measuring neighbouring atom coordinates as

displacements from the central atom. The elimination of rotational dependencies were achieved

by forming the matrix of all scalar products between the nonzero position vectors Xac, where

a = 1 . . .4 specifies direct neighbouring atoms and c is one of x, y, z:

B = XXT =



a2 a ·b a · c a ·d

b · a b2 b · c b ·d

c · a c ·b c2 c ·d

d · a d ·b d · c d2


(3)

The bond lengths can be obtained directly from the four diagonal elements. The information
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about the angle is provided by the six distinct scalar products. The system is over determined

by one DOF. However the matrix has only rank 3 because it was formed from a 4× 3 matrix.

Therefore one eigenvalue is zero, leaving a three-dimensional eigenspace which spans the nine

DOF’s remaining as well determined.

The matrix can be rewritten by using its eigendecomposition as:

B = QΛQT = (QΛ
1/2)((Λ1/2)T QT ) = (QΛ

1/2)(QΛ
1/2)T = X̄′(X̄′)T (4)

This defines a matrix X̄′ = QΛ
1/2 which produces the same scalar products. The matrix X̄′ will

contain one row of zeros, corresponding to the eigenvalue 0.

This row/column is discarded, and the remaining matrix R′ will be an eligible set of recon-

structed positions. In weeding out numerical garbage, the lowest eigenvalue is always discarded

even if it is not exactly zero. The remaining eigenvalues must be positive since the scalar product

is positive definite.
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(17) Himanen, L.; Jäger, M. O. J.; Eiaki V. Morooka,; Canova, F. F.; Ranawat, Y. S.; Gao, D. Z.;

Rinke, P.; Foster, A. S. DScribe: Library of Descriptors for Machine Learning in Materials

Science. Computer Physics Communications 2020, 247, 106949.

(18) Hall, L. H.; Mohney, B.; Kier, L. B. The Electrotopological State: Structure Information

at the Atomic Level for Molecular Graphs. Journal of Chemical Information and Computer

Sciences 1991, 31, 76–82.
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