2,373 research outputs found

    Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces

    Get PDF
    Calcite-fluid interface plays a central role in geochemical, synthetic, and biological crystal growth. The ionic nature of the calcite surface can modify the fluid-solid interaction and the fluid properties under spatial confinement and can also influence the adsorption of chemical species. We investigate the structure of the solvent and ions (Na, Cl, and Ca) at the calcite-aqueous solution interface under confinement and how such environment modifies the properties of water. To properly investigate the system, molecular dynamics simulations were employed to analyze the hydrogen bond network and to calculate NMR relaxation times. Here, we provide a new insight with additional atomistically detailed analysis by relating the topology of the hydrogen bond network with the dynamical properties in nanoconfinement interfaces. We have shown that the strong geometrical constraints and the presence of ions do influence the hydrogen bond network, resulting in more extended geodesic paths. Hydrogen bond branches connect low to high dynamics molecules across the pore and hence may explain the gluelike mechanical properties observed in the confinement environment. Moreover, we showed that the surface water observed at the calcite interface is characterized by slow transversal spin relaxation time (T2) and highly coordinated water molecules. The physical and electrostatic barrier emerged from the epitaxial ordering of water results in a particular ionic distribution, which can prevent the direct adsorption of a variety of chemical species. The implications of our results delineate important contributions to the current understanding of crystallization and biomineralization processes.Fil: Kirch, Alexsandro. Universidade de Sao Paulo; BrasilFil: Mutisya, Sylvia Mueni. Universidade Federal Do Abc; BrasilFil: Sanchez, Veronica Muriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: de Almeida, James Moraes. Universidade de Sao Paulo; BrasilFil: Miranda, Caetano Rodrigues. Universidade de Sao Paulo; Brasi

    H2O and CO2 Confined in Cement based Materials: An Ab Initio Molecular Dynamics study with van der Waals Interactions.

    Get PDF
    Although the cement has been widely used for a long time, very little is known regarding the atomistic mechanism behind its functionality. Particularly, the dynamics of molecular systems at confined nanoporous and water hydration is largely unknown. Here, we study the dynamical and structural properties of H2O and CO2 confined between Tobermorite 9A(T9) surfaces with Car-Parrinello molecular dynamics with and without van der Waals (vdW) interactions, at room temperature. For H2O confined, we have observed a broadening in the intra and intermolecular bond angle distribution. A shift from an ice-like to a liquid-like infrared spectrum with the inclusion of vdW interactions was observed. The bond distance for the confined CO2 was increased, followed with the appearance of shorter (larger) intramolecular (intermolecular) angles. These structural modifications result in variations on the CO2 symmetric stretching Raman active vibration modes. The diffusion coefficient obtained for both confined H2O and CO2 were found to be lower than their bulk counterparts. Interestingly, during the water dynamics, a proton exchange between H2O and the T9 surface was observed. However, for confined CO2, no chemical reactions or bond breaking were observed

    Atomistic Study of Water Confined in Silica.

    Get PDF
    In this work, we have used a combined of atomistic simulation methods to explore the effects of confinement of water molecules between silica surfaces. Firstly, the mechanical properties of water severe confined (~3A) between two silica alpha-quartz was determined based on first principles calculations within the density functional theory (DFT). Simulated annealing methods were employed due to the complex potential energry surface, and the difficulties to avoid local minima. Our results suggest that much of the stiffness of the material (46%) remains, even after the insertion of a water monolayer in the silica. Secondly, in order to access typical time scales for confined systems, classical molecular dynamics was used to determine the dynamical properties of water confined in silica cylindrical pores, with diameters varying from 10 to 40A. in this case we have varied the passivation of the silica surface, from 13% to 100% of SiOH, and the other terminations being SiOH2 and SiOH3, the distribution of the different terminations was obtained with a Monte Carlo simulation. The simulations indicates a lowering of the diffusion coefficientes as the diameter decreases, due to the structuration of hydrogen bonds of water molecules; we have also obtained the density profiles of the confined water and the interfacial tension

    Comparative untargeted metabolome analysis of ruminal fuid and feces of Nelore steers (Bos indicus).

    Get PDF
    We conducted a study to identify the fecal metabolite profle and its proximity to the ruminal metabolism of Nelore steers based on an untargeted metabolomic approach. Twenty-six Nelore were feedlot with same diet during 105 d. Feces and rumen fuid were collected before and at slaughter, respectively. The metabolomics analysis indicated 49 common polar metabolites in the rumen and feces. Acetate, propionate, and butyrate were the most abundant polar metabolites in both bio-samples. The rumen presented signifcantly higher concentrations of the polar compounds when compared to feces (P< 0.05); even though, fecal metabolites presented an accentuated representability of the ruminal fuid metabolites. All fatty acids present in the ruminal fuid were also observed in the feces, except for C20:2n6 and C20:4n6. The identifed metabolites ofer information on the main metabolic pathways (higher impact factor and P< 0.05), as synthesis and degradation of ketone bodies; the alanine, aspartate and glutamate metabolisms, the glycine, serine; and threonine metabolism and the pyruvate metabolism. The fndings reported herein on the close relationship between the ruminal fuid and feces metabolic profles may ofer new metabolic information, in addition to facilitating the sampling for metabolism investigation in animal production and health routines
    corecore