43 research outputs found

    Gradient jump penalty stabilisation of spectral/hp element discretisation for under-resolved turbulence simulations

    Get PDF
    One of the strengths of the discontinuous Galerkin (DG) method has been its balance between accuracy and robustness, which stems from DG’s intrinsic (upwind) dissipation being biased towards high frequencies/wavenumbers. This is particularly useful in high Reynolds-number flow simulations where limitations on mesh resolution typically lead to potentially unstable under-resolved scales. In continuous Galerkin (CG) discretisations, similar properties are achievable through the addition of artificial diffusion, such as spectral vanishing viscosity (SVV). The latter, although recognised as very useful in CG-based high-fidelity turbulence simulations, has been observed to be sub-optimal when compared to DG at intermediate polynomials orders (P ≈ 3). In this paper we explore an alternative stabilisation approach by the introduction of a continuous interior penalty on the gradient discontinuity at elemental boundaries, which we refer to as a gradient jump penalisation (GJP). Analogous to DG methods, this introduces a penalisation at the elemental interfaces as opposed to the interior element stabilisation of SVV. Detailed eigenanalysis of the GJP approach shows its potential as equivalent (sometimes superior) to DG dissipation and hence superior to previous SVV approaches. Through eigenanalysis, a judicious choice of GJP’s P-dependent scaling parameter is made and found to be consistent with previous apriori error analysis. The favourable properties of the GJP stabilisation approach are also supported by turbulent flow simulations of the incompressible Navier-Stokes equation, as we achieve high-quality flow solutions at P = 3 using GJP, whereas SVV performs marginally worse at P = 5 with twice as many degrees of freedom in total

    Impact of long-stay beds on the performance of a tertiary hospital in emergencies

    Get PDF
    ABSTRACT OBJECTIVE To assess the impact of implementing long-stay beds for patients of low complexity and high dependency in small hospitals on the performance of an emergency referral tertiary hospital. METHODS For this longitudinal study, we identified hospitals in three municipalities of a regional department of health covered by tertiary care that supplied 10 long-stay beds each. Patients were transferred to hospitals in those municipalities based on a specific protocol. The outcome of transferred patients was obtained by daily monitoring. Confounding factors were adjusted by Cox logistic and semiparametric regression. RESULTS Between September 1, 2013 and September 30, 2014, 97 patients were transferred, 72.1% male, with a mean age of 60.5 years (SD = 1.9), for which 108 transfers were performed. Of these patients, 41.7% died, 33.3% were discharged, 15.7% returned to tertiary care, and only 9.3% tertiary remained hospitalized until the end of the analysis period. We estimated the Charlson comorbidity index – 0 (n = 28 [25.9%]), 1 (n = 31 [56.5%]) and ≄ 2 (n = 19 [17.5%]) – the only variable that increased the chance of death or return to the tertiary hospital (Odds Ratio = 2.4; 95%CI 1.3;4.4). The length of stay in long-stay beds was 4,253 patient days, which would represent 607 patients at the tertiary hospital, considering the average hospital stay of seven days. The tertiary hospital increased the number of patients treated in 50.0% for Intensive Care, 66.0% for Neurology and 9.3% in total. Patients stayed in long-stay beds mainly in the first 30 (50.0%) and 60 (75.0%) days. CONCLUSIONS Implementing long-stay beds increased the number of patients treated in tertiary care, both in general and in system bottleneck areas such as Neurology and Intensive Care. The Charlson index of comorbidity is associated with the chance of patient death or return to tertiary care, even when adjusted for possible confounding factors

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    Gradient jump penalty stabilisation of spectral/hp element discretisation for under-resolved turbulence simulations

    Get PDF
    One of the strengths of the discontinuous Galerkin (DG) method has been its balance between accuracy and robustness, which stems from DG’s intrinsic (upwind) dissipation being biased towards high frequencies/wave numbers. This is particularly useful in high Reynolds-number flow simulations wherelimitations on mesh resolution typically lead to potentially unstable under-resolved scales. In continuous Galerkin (CG) discretisations, similar properties are achievable through the addition of artificial difusion, such as spectral vanishing viscosity (SVV). The latter, although recognised as very useful in CG-based high-fidelity turbulence simulations, has been observed to be sub-optimal when compared toDG at intermediate polynomials orders (P⇡≈3). In this paper we explore an alternative stabilisation approach by the introduction of a continuous interior penalty on the gradient discontinuity at elemental boundaries, which we refer to as a gradient jump penalisation (GJP). Analogous to DG methods, this introduces a penalisation at the elemental interfaces as opposed to the interior element stabilisation of SVV. Detailed eigen analysis of the GJP approach shows its potential as equivalent (sometimes superior) to DG dissipation and hence superior to previous SVV approaches. Through eigenanalysis, a judicious choice of GJP’sP-dependent scaling parameter is made and found to be consistent with previous a-priori error analysis. The favourable properties of the GJP stabilisation approach are also supported by turbulent flow simulations of the incompressible Navier-Stokes equation, as we achieve high-quality flow solutions atP= 3 using GJP, whereas SVV performs marginally worse atP= 5 with twice as many degrees of freedom in total

    Structural and Magnetic Properties of Spinel Ferrite Nanoparticles

    No full text
    In this paper we review the magnetic properties of spinel ferrite nanoparticles pointing out the primary role of the crystalline structure besides finite size and surface/interface effects. The details of the spinel crystal structure of bulk spinel ferrite materials and their influence on both the magnetization and magnetocrystalline anisotropy are recalled. Moreover, we review some results published in the literature over the last years about how the structure of magnetic nanoparticles influences their magnetic features. Perspectives about the challenges to improve the applications in several fields are finally reported
    corecore