116 research outputs found

    Topological strings on noncommutative manifolds

    Get PDF
    We identify a deformation of the N=2 supersymmetric sigma model on a Calabi-Yau manifold X which has the same effect on B-branes as a noncommutative deformation of X. We show that for hyperkahler X such deformations allow one to interpolate continuously between the A-model and the B-model. For generic values of the noncommutativity and the B-field, properties of the topologically twisted sigma-models can be described in terms of generalized complex structures introduced by N. Hitchin. For example, we show that the path integral for the deformed sigma-model is localized on generalized holomorphic maps, whereas for the A-model and the B-model it is localized on holomorphic and constant maps, respectively. The geometry of topological D-branes is also best described using generalized complex structures. We also derive a constraint on the Chern character of topological D-branes, which includes A-branes and B-branes as special cases.Comment: 36 pages, AMS latex. v2: a reference to a related work has been added. v3: An error in the discussion of the Fourier-Mukai transform for twisted coherent sheaves has been fixed, resulting in several changes in Section 2. The rest of the paper is unaffected. v4: an incorrect statement concerning Lie algebroid cohomology has been fixe

    On the logical operators of quantum codes

    Get PDF
    I show how applying a symplectic Gram-Schmidt orthogonalization to the normalizer of a quantum code gives a different way of determining the code's logical operators. This approach may be more natural in the setting where we produce a quantum code from classical codes because the generator matrices of the classical codes form the normalizer of the resulting quantum code. This technique is particularly useful in determining the logical operators of an entanglement-assisted code produced from two classical binary codes or from one classical quaternary code. Finally, this approach gives additional formulas for computing the amount of entanglement that an entanglement-assisted code requires.Comment: 5 pages, sequel to the findings in arXiv:0804.140

    Isotropic A-branes and the stability condition

    Full text link
    The existence of a new kind of branes for the open topological A-model is argued by using the generalized complex geometry of Hitchin and the SYZ picture of mirror symmetry. Mirror symmetry suggests to consider a bi-vector in the normal direction of the brane and a new definition of generalized complex submanifold. Using this definition, it is shown that there exists generalized complex submanifolds which are isotropic in a symplectic manifold. For certain target space manifolds this leads to isotropic A-branes, which should be considered in addition to Lagrangian and coisotropic A-branes. The Fukaya category should be enlarged with such branes, which might have interesting consequences for the homological mirror symmetry of Kontsevich. The stability condition for isotropic A-branes is studied using the worldsheet approach.Comment: 19 page

    Symplectic geometry on moduli spaces of J-holomorphic curves

    Full text link
    Let (M,\omega) be a symplectic manifold, and Sigma a compact Riemann surface. We define a 2-form on the space of immersed symplectic surfaces in M, and show that the form is closed and non-degenerate, up to reparametrizations. Then we give conditions on a compatible almost complex structure J on (M,\omega) that ensure that the restriction of the form to the moduli space of simple immersed J-holomorphic Sigma-curves in a homology class A in H_2(M,\Z) is a symplectic form, and show applications and examples. In particular, we deduce sufficient conditions for the existence of J-holomorphic Sigma-curves in a given homology class for a generic J.Comment: 16 page

    Multi-mode bosonic Gaussian channels

    Get PDF
    A complete analysis of multi-mode bosonic Gaussian channels is proposed. We clarify the structure of unitary dilations of general Gaussian channels involving any number of bosonic modes and present a normal form. The maximum number of auxiliary modes that is needed is identified, including all rank deficient cases, and the specific role of additive classical noise is highlighted. By using this analysis, we derive a canonical matrix form of the noisy evolution of n-mode bosonic Gaussian channels and of their weak complementary counterparts, based on a recent generalization of the normal mode decomposition for non-symmetric or locality constrained situations. It allows us to simplify the weak-degradability classification. Moreover, we investigate the structure of some singular multi-mode channels, like the additive classical noise channel that can be used to decompose a noisy channel in terms of a less noisy one in order to find new sets of maps with zero quantum capacity. Finally, the two-mode case is analyzed in detail. By exploiting the composition rules of two-mode maps and the fact that anti-degradable channels cannot be used to transfer quantum information, we identify sets of two-mode bosonic channels with zero capacity.Comment: 37 pages, 3 figures (minor editing), accepted for publication in New Journal of Physic

    On the geometric quantization of twisted Poisson manifolds

    Full text link
    We study the geometric quantization process for twisted Poisson manifolds. First, we introduce the notion of Lichnerowicz-twisted Poisson cohomology for twisted Poisson manifolds and we use it in order to characterize their prequantization bundles and to establish their prequantization condition. Next, we introduce a polarization and we discuss the quantization problem. In each step, several examples are presented
    corecore