170 research outputs found
Histochemical aspects of wheat resistance to leaf blast mediated by silicon
Blast, caused by Pyricularia oryzae, has become a significant disease threat to wheat (Triticum aestivum L.) in Brazil. This study aimed to investigate at the histochemical level if silicon (Si) could enhance the production of flavonoids in the leaves of wheat plants in response to P. oryzae infection. Plants from the Aliança cultivar, which are susceptible to blast, were grown in hydroponic cultures containing 0 (-Si) or 2 mM of Si (+Si) and inoculated by spraying a conidial suspension of P. oryzae (1 Ă 105 conidia mLâ1) on all adaxial leaf surfaces of plants at 60 days after emergence (growth stage 65). The fourth and fifth leaves of each plant were used to evaluate blast severity at 24, 36, 48, 72 and 96 h after inoculation (hai). At 96 hai, leaves were collected from plants to determine the foliar Si concentration. For cytological observations, leaf samples were randomly collected from the fourth and fifth leaves of each plant at 72 hai. The foliar Si concentration was higher in +Si plants (36 g kgâ1) in comparison to -Si plants (2.6 g kgâ1). This increased Si concentration was correlated with reduced fungal growth inside the epidermal cells and the development of blast symptoms on leaves. Strong fluorescence, which is an indication of the presence of flavonoids, was detected in the leaf cells of +Si plants using Neuâs and Wilson's reagents. A novel item of evidence is that, at the histochemical level, Si is involved in the potentiation of the biosynthetic pathway of flavonoids that increases wheat resistance to blast
- âŠ