15 research outputs found

    Trypanosome Prereplication Machinery: A Potential New Target for an Old Problem

    Get PDF
    Approximately ten million people suffer from Chagas disease worldwide, caused by Trypanosoma cruzi, with the disease burden predominately focused in Latin America. Sleeping sickness is another serious health problem, caused by Trypanosoma brucei, especially in sub-Saharan countries. Unfortunately, the drugs currently available to treat these diseases have toxic effects and are not effective against all disease phases or parasite strains. Therefore, there is a clear need for the development of novel drugs and drug targets to treat these diseases. We propose the trypanosome prereplication machinery component, Orc1/Cdc6, as a potential target for drug development. In trypanosomes, Orc1/Cdc6 is involved in nuclear DNA replication, and, despite its involvement in such a conserved process, Orc1/Cdc6 is distinct from mammalian Orc1 and Cdc6 proteins. Moreover, RNAi-mediated silencing of trypanosome Orc1/Cdc6 expression in T. brucei decreased cell survival, indicating that Orc1/Cdc6 is critical for trypanosome survival

    Replication origin location might contribute to genetic variability in Trypanosoma cruzi

    Get PDF
    Background: DNA replication in trypanosomatids operates in a uniquely challenging environment, since most of their genomes are constitutively transcribed. Trypanosoma cruzi, the etiological agent of Chagas disease, presents high variability in both chromosomes size and copy number among strains, though the underlying mechanisms are unknown. Results: Here we have mapped sites of DNA replication initiation across the T. cruzi genome using Marker Frequency Analysis, which has previously only been deployed in two related trypanosomatids. The putative origins identified in T. cruzi show a notable enrichment of GC content, a preferential position at subtelomeric regions, coinciding with genes transcribed towards the telomeres, and a pronounced enrichment within coding DNA sequences, most notably in genes from the Dispersed Gene Family 1 (DGF-1). Conclusions: These findings suggest a scenario where collisions between DNA replication and transcription are frequent, leading to increased genetic variability, as seen by the increase SNP levels at chromosome subtelomeres and in DGF-1 genes containing putative origins

    Access to

    No full text
    Approximately ten million people suffer from Chagas disease worldwide, caused by Trypanosoma cruzi, with the disease burden predominately focused in Latin America. Sleeping sickness is another serious health problem, caused by Trypanosoma brucei, especially in sub-Saharan countries. Unfortunately, the drugs currently available to treat these diseases have toxic effects and are not effective against all disease phases or parasite strains. Therefore, there is a clear need for the development of novel drugs and drug targets to treat these diseases. We propose the trypanosome prereplication machinery component, Orc1/Cdc6, as a potential target for drug development. In trypanosomes, Orc1/Cdc6 is involved in nuclear DNA replication, and, despite its involvement in such a conserved process, Orc1/Cdc6 is distinct from mammalian Orc1 and Cdc6 proteins. Moreover, RNAi-mediated silencing of trypanosome Orc1/Cdc6 expression in T. brucei decreased cell survival, indicating that Orc1/Cdc6 is critical for trypanosome survival

    Extracellular Vesicles From Sporothrix brasiliensis Are an Important Virulence Factor That Induce an Increase in Fungal Burden in Experimental Sporotrichosis

    No full text
    Sporotrichosis is a mycosis that affects the skin, lymphatic system and other organs in humans and animals. The disease has a worldwide distribution, with endemic areas in Brazil, and is caused by a complex of species, including Sporothrix brasiliensis. Some fungi release extracellular vesicles (EVs) that can interact with the host cell and modulate the host immune response. The aim of this study was to analyze the participation of S. brasiliensis EVs in the modulation of dendritic cells (DCs) and in the control of infection in vivo. Our results showed that in vitro, the EVs isolated from S. brasiliensis induced an increase in the phagocytic index and fungal burden in DCs. In addition, we observed a significant increase in IL-12p40 and TNF-α cytokine production. Then, the EVs were inoculated into BALB/c mice before subcutaneous infection with yeast, and the lesion was analyzed after 21, 35, and 42 days. An increase in fungal burden and lesion diameter were observed after 21 days in mice inoculated with a high concentration of EVs. However, after 35 days, we observed a regression of the lesion, which persisted until 42 days after infection. Interestingly, we observed an increase in fungal burden in these mice. In addition, we observed the presence of immunogenic components and proteins that could be related with virulence in EVs. These results suggest that EVs can play an important role in virulence and modulation of the host immune system during experimental S. brasiliensis infection
    corecore