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Abstract

unknown.

genes from the Dispersed Gene Family 1 (DGF-1).

Background: DNA replication in trypanosomatids operates in a uniquely challenging environment, since most of
their genomes are constitutively transcribed. Trypanosoma cruzi, the etiological agent of Chagas disease, presents
high variability in both chromosomes size and copy number among strains, though the underlying mechanisms are

Results: Here we have mapped sites of DNA replication initiation across the T. cruzi genome using Marker Frequency
Analysis, which has previously only been deployed in two related trypanosomatids. The putative origins identified in T.
cruzi show a notable enrichment of GC content, a preferential position at subtelomeric regions, coinciding with genes
transcribed towards the telomeres, and a pronounced enrichment within coding DNA sequences, most notably in

Conclusions: These findings suggest a scenario where collisions between DNA replication and transcription
are frequent, leading to increased genetic variability, as seen by the increase SNP levels at chromosome
subtelomeres and in DGF-1 genes containing putative origins.
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Background

Genome replication is responsible for accurate transmis-
sion of genetic information through cell division cycles.
As originally proposed in 1963, cells rely on two genetic
elements to duplicate their genome: the replicator, a DNA
region where replication begins (now named the replica-
tion origin), and the initiator, a protein or a protein com-
plex that recognizes the replicator [1]. Specific DNA
sequences to define the replicator are found in the ge-
nomes of bacteria, some archaea [2], and in Saccharomy-
ces cerevisiae and related species [3]. In all other
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eukaryotes, clear consensus sequences for origins are elu-
sive, perhaps indicating there are no cis elements to initi-
ate replication in most of these cells and organisms.
Instead, association of the initiator with origins may be
dictated by nuclear architecture, gene density, chromatin
status (such as histone modification or nucleosome posi-
tioning), transcriptional activity, and AT or CG content
[4-6].

In eukaryotes, the initiator is termed the Origin Recog-
nition Complex (ORC) [7, 8] and is assembled at replica-
tion origins during mitosis-G1 phases of the cell cycle,
when it recruits, via Cdc6 and Cdtl, the MCM replica-
tion helicase, allowing origins become ‘licensed’ [9, 10].
Then, when cells reach S-phase, a set of enzymatic and
regulatory factors activate some, but not all, origins,
which are differently used depending on the cell types
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and stages of development, and even in different cells of
the same population. According to the usage, origins
have been classified as constitutive (fired at same pos-
ition in different cells of a population), flexible (fired sto-
chastically in different cells) and dormant (fired as
consequence of replication stress) [5]. After origin firing,
bidirectional replication forks travel until they reach ter-
mination sites. However, the replisome can be stalled by
depletion of nucleotide pools or barriers on the tem-
plate, such as DNA damage, secondary structures or
protein complexes [11]. Collision between replication
and transcription is considered especially problematic, as
each are catalyzed by large multiprotein machines, and
can occur co-directionally, when the replication fork and
transcription machinery are moving in the same direc-
tion, or on the leading strand and is head-on, when the
fork and transcription are moving towards each other.
Accumulated evidence suggests head-on collisions have
a more pronounced effect on genome instability, perhaps
because more extensive changes to the machinery and
template are needed to resolve such conflicts [12], some
of which might result in increased single-stranded DNA
gaps and DNA double strand break (DSB) formation
[13]. Alternatively, genome instability may arise because
stalled replisomes promote the action of translesion
DNA polymerases (Pols) [14], which can catalyze error-
prone DNA synthesis [15]. Taken together, considerably
greater flexibility in initiator-directed origin usage is
found in eukaryotes than in prokaryotes. Whether such
flexibility might extend yet further, and perhaps include
transcription-driven processes [16] is less clear.

The Trypanosomatida is a grouping of single-celled
eukaryotic that includes the human pathogens, Leish-
mania spp., Trypanosoma cruzi and Trypanosoma bru-
cei, which are responsible for more than 50,000 deaths
annually [17]. Understanding DNA replication in these
organisms is not only important to comprehend how
parasite proliferation is controlled, but the highly un-
usual manner in which they express their genes suggests
the potential for unparalleled interaction, and potentially
conflicting, between replication and transcription. Virtu-
ally every trypanosomatid protein-coding gene is found
within a directional gene cluster (DGC) that can contain
hundreds of genes with the same orientation [18]. This
organization reflects transcription, where all genes
within a DGC are transcribed from a single RNA pol II
transcription initiation site, producing multigene pre-
mRNAs that are processed to generate mature mRNAs
through trans-splicing and polyadenylation [19]. The
pervasive, highly directional movement of RNA pol II
across the genome appears common to all kinetoplastids
[20], far surpassing multigenic transcription described in
other eukaryotes, and has already prompted investiga-
tions concerning DNA replication initiation and
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coordination with transcription in 7. brucei and Leish-
mania major. In T. brucei origins were mapped by
marker frequency analysis sequence (MFA-seq; sort-seq
in yeast) [21] coupled to ChIP analysis of one compo-
nent of ORC [22], termed ORC1/CDC6 [23]. These data
show that all mapped T. brucei origins are found at the
boundaries of the DGCs, which all appear to bind
ORC1/CDC6. Nonetheless, not all ORC1/CDCE6 sites are
activated as origins, resulting in very widely spaced ori-
gins. Furthermore, the frequency of origin use, or the
timing of activation, is variable across the genome, but
the pattern of initiation mapped by MFA-seq displays
considerable inflexibility during life cycle progression or
growth [24]. Nonetheless, there are connections between
transcription and replication: MFA-seq data shows DNA
replication is more strongly impeded as it meets tran-
scription head-on [23], RNAi of ORC1/CDC6 increases
transcript abundance at the start and end of the DGCs
(Tiengwe et al., 2012), telomere transcription levels in-
fluence replication timing, and telomere variation is
dependent on ORC1/CDC6 levels [25]. MFA-seq sug-
gests a pronounced difference in origin usage in Leish-
mania compared with T. brucei, with only a single
origin per chromosome detected [26]. Such a difference
is perhaps surprising, given the common use of multi-
genic transcription, and the fact the mapped origins
were found, like in 7. brucei, at the ends of DGCs (with
~40% of locations conserved relative to T. brucei). How-
ever, recent data perhaps suggest greater flexibility in
trypanosomatid replication than is suggested by MFA-
seq. In T. brucei, analysis of one chromosome suggests
the activation of at least one back-up origin after
hydroxyurea-induced impairment of DNA replication
[27]. Indeed, DNA combing in both T. brucei and Leish-
mania was used to extrapolate a greater number of pre-
dicted sites of DNA replication initiation than origins
mapped by MFA-seq, though was not able determine if
these predicted sites relate to ORC binding or, indeed,
in what part of the genome they might reside [28]. Fi-
nally, mapping nascent DNA strands in L. major sug-
gested >5000 sites of DNA replication initiation, with
very limited correlation with the ends of the DGCs [29].
Taken as a whole, these studies might indicate that
complete replication of the entire genome in the rela-
tively short S phases of T. brucei and Leishmania [30]
may require not merely constitutive origins, but also fur-
ther flexible and/or dormant origins, which might or
might not coincide with ORC binding. Moreover, inter-
section between transcription and replication may not
simply be at DGC boundaries [23], but sites of replica-
tion initiation may also be located where RNA Pol II
stalls or slows down during traversal of a DGC [29].
Thus, multigenic transcription may be an important de-
terminant of DNA replication, allowing co-ordinated
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recruitment of ORC and RNA Pol [23], or using tran-
scription pausing [29] or replication-transcription
clashes [31] to promote DNA replication initiation.

A limitation of the emerging data discussed above is
that so far only two members of the trypanosomatid
grouping have been examined, meaning the basis for the
differences in DNA replication in 7. brucei and Leish-
mania remain unclear. Here, we seek to address these
limitations by mapping DNA replication in T. cruzi, wid-
ening the range of parasites, and genome organization,
examined. The success of T. cruzi infection is in part
due to 18% of its genome that is composed of multigene
families, including both functional and pseudogenes pre-
dicted to encode surface proteins that contribute to cel-
lular invasion and escape from immunity [32, 33].
Among these families, the trans-sialidase (TS) and dis-
persed gene family-1 (DGF-1) genes are enriched at sub-
telomeric regions of chromosomes [33], though other
gene arrays are found throughout the chromosomes. In-
triguingly, next generation sequencing has suggested
that T. cruzi, like Leishmania, displays chromosomes
that deviate from diploidy [34], whereas no such aneu-
ploidy is seen in T. brucei [35]. Whether this difference
relates to T. cruzi and Leishmania each having their gen-
ome housed in large numbers (> 35) of relatively small
chromosomes, whereas the T. brucei genome is found in
11 relatively large chromosomes, is unknown. Nonethe-
less, in the last years, evidence has accumulated suggest-
ing that gene arrays are sites that favor homologous
recombination (HR) [36-38] as the driver of genetic
variability among these families [38]. However, how HR
is triggered in these locations, is still unknown.

Here we used MFA-seq to provide the first genome-
wide map of DNA replication initiation sites in 7. cruzi.
Despite the technical challenge of next generation se-
quence mapping in this uniquely repetitive genome, we
show that some sites of replication initiation map to the
borders of the DGCs, as seen for MFA-seq mapping in
T. brucei and Leishmania and therefore suggesting a
widespread, conserved localization of origins. In
addition, we provide evidence that DNA replication initi-
ation is also frequently being located at DGF-1 genes,
which may explain the high genetic variability observed
in such gene families.

Results

T. cruzi DNA replication origins were determined by two
different approaches

In order to investigate DNA replication dynamics in T.
cruzi we analyzed the CL Brener strain, which was used
for the T. cruzi genome sequence project [32]. Scaffolds
and contigs of CL Brener strain were organized into 41
in silico chromosome pairs that vary in size ranging
from 78kb to 2.3Mb (tritrypdb.org), although some
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evidences suggest that this assembly may be revised [36].
The CL Brener strain has a hybrid origin [39, 40] con-
taining two divergent haplotypes, named Esmeraldo-like
(S) and Non-Esmeraldo-like (P) [32]. We presumed that
the presence of these two haplotypes would enrich our
analysis since i. haplotypes are derived from different an-
cestors leading for evolutionary insights; and ii. findings
from one haplotype could be confirmed by another, in-
creasing robustness of our observations. We performed
MFA-seq, the methodology used to infer replication
origins in 7. brucei and L. major [23, 26]. This technique
compares the copy number of marker sequences in rep-
licating (early-S) and nonreplicating (G2) cells. The
peaks represent the early replicating sequences (origins)
while later replicating sequences give rise the valleys
[23]. Given the mapping complexity, consensus peaks
were assigned by two different approaches, using read
abundance mapped in 2500 bp. The majority of pipelines
use either a null or background model or, simply, the
fold change to assign a significance score to each peak
region identified. Thus, exponentially growing CL Brener
epimastigotes at early S (TcS) and G2 (TcG2) were
sorted by flow cytometry (in two biological replicates —
R1 and R2), followed by DNA extraction and deep se-
quencing. A total of 23,895,550 TcS (R1), 22,621,761
TcS (R2), 22,677,016 TcG2 (R1), and 21,915,604 TcG2
(R2) high quality paired-end reads were checked for
quality, by sequencing adapter and contaminants re-
moval, by quality trimming and minimum size (Table
S1). The high quality paired-reads were mapped to T.
cruzi CL Brenner, S and P genome haplotypes, using
bowtie2. The paired-end reads mapped on average of
66% to the S and 70% to the P genome haplotypes for
each sample (Table S1). On average 78% of S and 87% P
genomes are covered by the mapped (unique and non-
duplicated) paired-end reads (Table S2). We first used
the fold change to assign a significance score to each
peak region identified. Two hundred forty seven putative
initiation sites were predicted in the P haplotype of R1
(Table S3) and 247 of R2 (Table S4); 234 in the S haplo-
type of R1 (Table S5) and 235 of R2 (Table S6). Figure 1
shows the extent of DNA enrichments in S phase rela-
tive to G2 in 04 out of 41 chromosomes for both R1 and
R2 replicates. Both P and S haplotypes are indicated.
The visualization of data shows that peak locations are
quite similar between replicates. We performed an ana-
lysis in order to compare the position of peaks between
replicates. To make this analysis, we first discarded those
peaks found in one chromosome in one replicate, but
not in another one. Also, when we found two peaks in
one replicate but only one in another replicate, we se-
lected just the peak closer to the one of the first repli-
cate. In the end, 129 MFA-seq peaks pair were
compared (Table S7): the median distance between them
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(See figure on previous page.)

Fig. 1 Mapping replication origins in the T. cruzi nuclear genome. a. Graphs show the extent of DNA enrichment in S phase relative to G2, in the
indicated chromosomes. For each panel, the top track displays the chromosome size. The two graphs below show positive z-scores for the ratio
of read depth between early S phase and G2 samples (y-axis) in a 2.5 Kbp window across the chromosome (x-axis), for two independent
replicates. Finally, the track at the bottom of each panel displays the annotated transcripts. b. Distance (in Kbp) between the closest peak of MFA-
seq replicates. 129 MFA-seq peaks pair were compared: the median distance between them was 61.3 Kop and 19 (15%) overlaped

was 61.3 Kbp and 19 (15%) overlapped. Note that, an  Putative origins are enriched of GC content and at
average inter-origin distance was estimated as 171.1 Kbp = chromosomes peripheries in regions where transcription
[41]. occurs towards the telomere

In a second approach, peaks were obtained by MACS2  We next analyzed the genomic location of the S/G2
software [42]. This approach predicted 304 and 260 pu- enriched regions, comparing the location of peaks esti-
tative replication initiation sites, respectively, in the P mated by fold change analysis, the consensus peaks
haplotype R1 (Table S3) and S haplotype R1 (Table S5).  (representing intersection between fold change and
Overlap between these two approaches, peaks from fold MACS2), GC content and transcription orientation
change R1 x peaks from MACS2 R1, is shown in Fig. 2a  across all T. cruzi chromosomes (Additional file 1 and
and b, with 110 and 103 consensus replication initiation  see Fig. 3 with chromosomes 6 and 14 as examples). We
sites common to the two approaches in the P (Table S8)  noted that in chromosome 6 the ORIs were mapped in
and S haplotypes (Table S9). Consensus peaks obtained  both haplotypes in a region where members of multi-
from R2 are presented on Tables S10 and S11. The gene families (MGF) were scarce, a “conserved compart-
number of S/G2 enriched regions increases with the size  ment” according Bernd et al, 2018 [43]. Whereas in
of chromosomes (Fig. 2c and d) as was observed for 7.  chromosome 14 the ORIs were mapped at the 5" end re-
brucei [23] but not for Leishmania [26]. gion enriched in members of MGF (“disrupted”
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Fig. 2 Mapping the number of replication origins in T. cruzi genome. Peaks determination was obtained using the MFA-seq data based on the
number of reads (fold change) along the genome of cells in replicative and non-replicative phases (ratio S/G2) (fold change - fc) or determined
by using the MACS2 software. The Venn diagram shows the number of peaks detected on the two CL Brener haplotypes Esmeraldo-like (a) and
Non-Esmeraldo-like (b), according to the type of analysis cited above. The intersection between them corresponds to the consensus of the peaks,
which have been determined as origins of replication. The number of peaks detected in all analyses was compared with the size of each
chromosome in Esmeraldo like () and in Non-Esmeraldo-like (d). A trendline was plotted to facilitate visualization. Values of R? are shown
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compartment, according Bernd et al., 2018) [43] and a
second one within a “core compartment”. Therefore, we
decided to analyse the presence of ORIs in the entire
genome according to distribution of MGF. Although we
found ORIs in both conserved and disrupted compart-
ments, there is an enrichment of ORIs in the disrupted
region (Additional file 2).

No consensus S/G2 enriched regions were predicted
for chromosomes 1, 15, 20, 29 from S and 1, 2, 9 and 37
from P haplotypes. Lack of predicted origins may be due
to two non-exclusive reasons: (i) these chromosomes
can be replicated with facultative origins that are not de-
tected in MFA-seq; (ii) T. cruzi genome annotation pre-
sents gaps that varies between 200bp and 20kb.
Although these gaps are not long (media of chromo-
somes medians are 134.6 bp in S and 144.6 bp in P), they
might be compromising the identification of ORIs in
some regions.

To better analyze GC content in consensus peaks, we
next analyzed their base content in comparison to ran-
domly selected genomic regions. The GC content

throughout the random samples of binned (1083 bp) gen-
omic regions for both P and S haplotypes are very similar:
average of 40 and 44%, respectively. While the predicted
ORIs were notably GC enriched (on average, 65% for both
haplotypes with lower standard deviation and reaching up
to 72% of GC content); the genomic regions did not ex-
ceed 54% in GC content, highlighting the larger differ-
ences for the predicted ORIs (Table 1 and Fig. 4). In
addition, the CG content of DGF-1 ORIs is 68.25% (S)
and 68.20% (P), while the CG content in the rest of identi-
fied ORIs is 62.36% (S) and 60.14% (P).

We note in the Additional file 1 that some chromo-
somes seem to present putative ORI at the same location
in both P and S haplotypes (see chromosomes 3, 6, 13,
16 as examples), while in others, the location changes
when compared to different haplotypes. Therefore, we
look for synteny on P and S haplotypes in four chromo-
somes as presented in Fig. 5: Chromosomes 3 and 6 that,
apparently, contain ORIs in the same position in both
haplotypes; chromosome 8, where putative origins were
identified in both haplotypes, but in different positions;

Table 1 Comparison of GC-content. Comparative of %GC-content measures, considering the genome bins of 1083 bp and the
predicted ORIs. Min: %GC minimum, Max: %GC maximum, StdDev: %GC Standard deviation, Mean: %GC average estimation

GC content  Esmeraldo Like haplotype ~ Non-Esmeraldo Like haplotype

Predicted ORIs Esmeraldo Like Predicted ORIs Non-Esmeraldo Like

Average 40% 44%
StdDev 6% 5%
Min 24% 33%

Max 53% 54%

65% 65%
4% 4%

52% 53%
72% 72%
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and chromosome 9, where putative ORI was identified
in one haplotype but not in other (Additional file 1 and
Fig. 5a). We found that syntenic regions between haplo-
types do not harbor putative ORIs (Fig. 5b). This is evi-
dent on chromosome 6 where putative ORIs are in the
same location, haplotypes are sythenic but the specific
region that contains ORI is not synthenic. The opposite
is also true. The putative ORI is found in a synthenic re-
gion on Chr3-P and this region does not contain ORI in
Chr3-S. Therefore, it seems that different position of
ORIs is not due to chromosomes rearrangements. How-
ever, since even in the syntenic regions of S and P haplo-
types there are differences between the homologous
chromosomes due to the duplication/deletion events oc-
curred during 7. cruzi evolution, we need further studies

in order to understand the molecular bases of origins lo-
cation in this parasite.

Next, we analyzed the ORI location across the genome
and we observed that the origins are preferentially located
at the edges of chromosomes (Fig. 6). After that, we asked
how transcription orientation on regions is containing pu-
tative origins. So, we classified DGCs whether the corre-
sponding coding DNA region came from positive and
negative strands. Strikingly, there was a clear correlation
between replication initiation site location (beginning or
end of chromosome as annotated in the trytripdb.org) and
transcription orientation: more replication initiation sites
were located at the beginning of chromosomes in regions
where transcription is also orientated towards the chro-
mosomes’ beginning (negative strand, Fig. 6); and,
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likewise, more initiation sites were predicted at the end of
chromosomes, where the orientation of transcription is to-
ward the end of chromosome (positive strand, Fig. 6). We
also analyzed overlapped peaks between R1 and R2 and
those peaks are indeed preferentially located at the chro-
mosomes edges (Additional file 3).

Most putative origins are located at dispersed gene
family 1 (DGF-1) genes

To further investigate the predicted replication initiation
sites in the T. cruzi genome, we examined what genomic
features they correlate with. We classified the T. cruzi

genome into CDS, transcribed inter-CDS, divergent SSR
and convergent SSR sequences and asked about their
colocalization with the predicted consensus replication
initiation sites (Additional file 4). We found that in P
haplotype, four putative origins were predicted in diver-
gent SSRs, three in convergent SSRs, seven in inter-CDS
regions and 96 within CDS. Remarkably, among the 96
putative origins in CDS at P haplotype, 71 (64.5%) were
located in DGF-1 family genes (Table S8). In S haplo-
type, three putative origins were in divergent SSRs, one
in a convergent SSR, three in inter-CDS regions, and 96
in CDSs. Like in the P haplotype, most of the putative
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Fig. 6 Origins are enriched at chromosomes ends. The ORI density was plotted to all 41 T. cruzi chromosomes according to their relative chromosome
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chromosome location in S haplotype. The y-axis in a density plot is the probability density function for the kernel density estimation. (b) Overall gene
density and transcription orientation along each chromosome in P haplotype. (—) Genes transcribed in the negative strand; (+) genes transcribed in the
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CDS origins (68, or 66% of the total) were also located
in DGF-1 family genes in S haplotype (Table S9). To
better understand these origins containing DGF-1, we
performed three analysis as present in Additional file 5.
We could see that ORIs were found at longer DGF-1,
most of them in DGF-1 genes (and not at pseudogenes),
and in DGF-1 tandem arrays. In addition, since we didn’t
identify ORIs at Chrl, Chr2, and Chr 37 from S haplo-
type and from Chrl, Chrl5, Chr20 and Chr29 from P
haplotype, we asked if it could be due to lack of DGF-1
genes in these chromosomes. However, four of them
contain DGF-1 genes (ChrlS- 1 DGF-1 gene; Chr 25 — 1
gene, Chr 1P — 1 gene, and Chr20P — 3 genes) and
therefore, lack of origin might not be explained by lack
of DGF-1 genes in these chromosomes. We also ana-
lyzed where ORIs are localized in those chromosomes

that do not harbor DGF-1 genes. Table S10 shows CDSs
containing ORIs in these chromosomes. Concerning R2,
in —P haplotype 12/86 origins are in inter-CDS, 4/86
within convergent SSR, and 69/86 within CDS (Table
S11), while in S haplotype 9/78 ORI are in inter-CDS, 1/
78 is within convergent SSR, and 68/78 within CDS
(Table S12). We also checked if putative ORIs were at
DGEF-1 genes in replicate 2. We found that 22% of puta-
tive ORIs were localized in DGF-1 in P haplotype and
27% of them in DGEF-1 in S haplotype. The enrichment
of ORIs at DGF-1 genes is also true for peaks that are
overlapped between R1 and R2-45% of CDS peaks are
in DGF-1 in S haplotype and 27% in P haplotype — Add-
itional file 3 and Table S13. Since DGF-1 genes repre-
sent only 3.33% of the total genome in base pairs on
both haplotypes (Table S14) and are not the most
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abundant multigene family in 7. cruzi (Additional file 6),
we conclude there is a great enrichment of replication
initiation sites at DGF-1 genes.

Since T. cruzi in silico chromosomes are incomplete,
we double-checked the presence of ORIs at chromosome
ends analyzing regions previously mapped as chromo-
somes extremities [36]. Nineteen putative origins in the
P haplotype and 19 in S (Table S15) matched with previ-
ously annotated subtelomeric regions. Considering that
the 38 subtelomeric regions ORI positive represent less
than 0.2% of genome in size, and 17.8% of putative ori-
gins were located at these regions, we conclude that rep-
lication initiation is enriched at subtelomeric regions in
T. cruzi. All putative origins found in subtelomeric re-
gions were inside DGF-1 genes, meaning that 21 and
19% of DGEF-1 associated putative origins from the P
and S haplotypes, respectively, are at the subtelomeric
region.

Putative T. cruzi origins locations are associated with
increased sequence variability

Subsequently, we asked if chromosome peripheries and
DGEF-1 genes containing putative origins are associated
with signatures of sequence variability. To address this,
we first analyzed single nucleic polymorphism (SNP)
across the entire genome. To this end, mapped reads
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from MFA-seq were compared and SNPs were detected.
In performing this analysis, we found that the frequency
of SNPs was highest towards the periphery of the chro-
mosomes in both haplotypes (Fig. 7a). Next, we com-
pared the frequency of SNPs in DGF-1 genes predicted
to contain putative origins with those without predicted
origins: SNPs were much abundant in the former (Fig.
7b), indicating an association between sites of replication
initiation and genetic variability strongly corroborating
to genetic variability.

Discussion

Here we investigated the DNA replication characteristics
using Marker Frequency Analysis. The number of puta-
tive ORIs obtained either by fold change or by MACS2
is higher than obtained after prediction of the consensus
peaks suggesting that using the consensus approach
might have a more reliable set by excluding false positive
ORIs. However, this strategy may also exclude predicted
origins that could be relevant for our analysis. Given that
the number of T. cruzi S/G2 enriched regions predicted
by both strategies exceeds the number of predicted ori-
gins in both T. brucei and two species of Leishmania
[23, 26], we decided to be more stringent and continue
the follow analysis by using the putative ORIs obtained
by the consensus prediction approach. In order to
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characterize the ORIs in T. cruzi genome, we first looked
for a consensus sequence in ORIs but we dind’t find.
Also, we extracted ORIs presented at both R1 and R2
and mapped them via BLASTn against Leishmania
major, L. mexicana, and T. brucei genomes. However,
we dind’t get any hit. Then, we looked for the predomin-
ant content at these putative replication sites. It was pos-
sible to observe that the majority of predicted origins in
T. cruzi are GC enriched regions. This data reinforces
the fact that S/G2 enriched regions could act as origins
since some primary sequence elements have been widely
associated with the replication origins in various organ-
isms. In S. cerevisiae, origins are enriched with AT- se-
quences but in the other eukaryotes, origins are GC-rich
sequences [44], including CpG islands and G-rich ele-
ments of the Origin G-rich repeated element (OGRE),
which have great potential to form secondary DNA con-
formations, such as G-quadruplex [45, 46], and interca-
lated motif (i-motif) [47, 48].

To get an overview of DNA replication initiation loca-
tion across the genome, we also determined origin dens-
ity in relation to chromosome length. We could clearly
see that origins are constrained at chromosomes periph-
ery suggesting greater abundance with telomere proxim-
ity. This finding indicates that one replication fork drives
towards the chromosome end, meaning it provides a
relatively less important contribution to chromosome
replication. Therefore, we wondered if the putative ORIs
detected would be enough to allow 7. cruzi to fully repli-
cate its chromosomes during S phase. Previous analysis
by DNA combing (which can detect any replication initi-
ation event, including constitutive, flexible and dormant
origins, but without reference to genome location) in T.
cruzi CL Brener suggested a median inter-origin distance
of 171.1 kb [41], which can be extrapolated to a total of
85 origins, which is close to 103 and 110 putative con-
sensus origins mapped in the P and S haplotypes in this
analysis. Therefore, it indicates that MFA-seq analysis
was able to cover origins used by 7. cruzi to replicate
entire genome at least in an unstressed condition.

Following the characterization of 7. cruzi ORIs, we in-
vestigated the origins position at the edges of chromo-
somes and correlated them with the transcription profile
at that region. In fact, the orientation of transcription to-
wards chromosomes telomeres is a feature of the T.
cruzi genome (Additional file 7), suggesting the greater
abundance of putative origins in subtelomeres generates
head-on transcription-replication collisions as the repli-
somes move towards the centers of the chromosomes.
In accordance with this scenario is the fact that T. cruzi
subtelomeric regions are indeed transcribed since RNA-
seq data detected RNAs originated from this location
(www.tritrypdb.org). This is an intriguing result because
prokaryotes and eukaryotes rely on some resources to
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avoid conflicts between transcription and replication
machineries, such as temporal and special separation of
transcription and replication processes, avoid stalled
RNA polymerases in the genome, and orientation of
highly transcribed genes in the same direction of replica-
tion fork movement [49]. Even organisms that present
genes organized in operons (in the case of C. elegans) or
in polycistron (as T. brucei), origins are located in tran-
scription start sites warranting the replication fork
movement in the same direction than transcription [23,
50]. Therefore, it tempts us to propose that in T. cruzi,
sites of replication initiation seem to be strategically po-
sitioned to favor replicative stress and, consequently, to
promote recombination events observed at T. cruzi sub-
telomeric regions [36—38]. In other words, subtelomeric
replication initiation, where transcription occurs towards
chromosome ends, may be at least one of the sources of
DNA breaks, because transcription has been shown to
arrest replication fork progression [51, 52]. Stalled repli-
cation forks can accumulates ssDNAs and become prone
to DSBs [53] that is repaired by homologous recombin-
ation [54]. Besides the favoring of DSB by stalled replica-
tion fork due its collision with transcription machinery,
stalled replication fork can promote the action of trans-
lesion DNA polymerases [14], which can catalyze error-
prone DNA synthesis [15] or can accumulate ssDNAs
and become prone to DSBs that may be repaired by
microhomology end joining, whose consequences in-
clude base pair substitution [55].

Interestingly, the majority of ORIs identified in this
analysis was preferentially positioned inside the CDSs,
mainly in the DGF-1gene. It is known that many mem-
bers of the DGF-1 gene family are located in subtelo-
meric regions, where they may be prone to variability
[56]. In order to ask if the putative origins within the
DGEF-1 genes are also located in subtelomeric regions,
we further mapped them within the 49 subtelomeric re-
gions described by Moraes Barros et al., 2012, who de-
tailed the organization and gene content of 7. cruzi
chromosomes ends [36], and confirmed that all putative
origins identified in that region were inside the DGF-1
gene. It has been argued that trypanosomatids limit the
presence of ORC-defined origins to SSRs, leading to
widely spaced origins, in order to limit binding of the
initiator and thereby limiting transcription-replication
clashes in the context of multigenic transcription [23,
26, 57]. Thus, the presence of putative origins within
CDS, and in particular within DGF-1 genes, in T. cruzi
is striking. Data from mammalian cells showed that rep-
lication forks from origins inside genes are prone to col-
lapse due to collision between transcription and
replication machinery, which triggers DSB formation
and chromosomal rearrangement [58]. We envisage a
similar event could occur in the replicative T. cruzi
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epimastigote forms examined here: replication from
DGEF-1 gene origins has evolved to favor collision with
transcription during S phase since it favors genetic vari-
ability. Further studies are necessary to validate this hy-
pothesis. We need to explore, for instance, whether (and
which) DGF-1 is transcribed at S phase of replicative
forms and if these DGF-1 transcribed at replicative
forms would be expressed in the infective forms where
the larger repertoire of DGF-1 isoforms could contribute
for infection. In fact, it has already been shown that try-
pomastigotes [59] express DGF-1, and some members of
this protein are differentially expressed during the life
cycle stages [60], though additional analysis of this
family’s expression during the 7. cruzi life cycle needs to
be conducted.

Conclusions

In conclusion, this paper provides the first attempt to
map sites of replication initiation across the uniquely
challenging T. cruzi genome. Though we cannot be cer-
tain the regions of increased S/G2 enrichment truly rep-
resent origins, since we have not mapped localization of
the ORC machinery, our data suggest that while some T.
cruzi origins are located in non-transcribed regions as
well as those seen in T. brucei and Leishmania, many
more appear strategically localized to produce genetic
variability at the chromosomes periphery, with a strong
focus on DGFl-genes. Whether this is because of
replication-transcription conflicts derived from DNA
forks emanating from ORC-defined origins in these loci,
or if we have detected replication that may arise from
transcription, as proposed in Leishmania [29] requires
further analysis. Further work is also warranted to ask
what features of the T. cruzi DGF-1 genes dictate DNA
replication initiation, and why variability in these loci
might be needed in order to guarantee the success of T.
cruzi infection.

Methods

Parasites

Trypanosoma cruzi CL Brener clone was obtained from
CL Trypanosoma cruzi strain isolated from a Triatoma
infestans collected in Rio Grande do Sul, Encruzilhada,
South Brazil, in1963 [61, 62]. Epimastigote forms were
maintained in Liver Infusion Tryptose (LIT) at 28 °C, at
a density of 3 x 10° parasites.ml™ .

Cell sorting

Epimastigotes in exponential growth (about 1x10°para-
sites total) were centrifuged at 1258 g for 5 min, washed
in PBS and incubated with a propidium iodide (PI) solu-
tion (3.4mM Tris-HCl ph7.4; 0.1% NP-40; 700 U/L
RNAse; 10 mM NaCl; 0.075 mM propidium iodide — PI)
for 10 min. After the incubation time, the parasites were
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sorted in early S and G2/M phases using a FACSAria II
(BD Biosciences) at the Rede de Plataformas Tecnoldgi-
cas (RPT-FACS), FIOCRUZ - PR. The parasites in early
S or G2/M were collected during the sorting in lysis buf-
fer (1 M NaCl; 10 mM EDTA; 50 mM Tris-HCI pH 8.0;
0.5% SDS; 0.4 mg/ml Proteinase K; 0.8 pg/ml Glycogen)
and then, they were incubated for 2 h at 55°C. The lys-
ate was stored at — 20 °C until the DNA extraction. Gen-
omic DNA from early S and from G2/M was extracted
according to manufactures instructions, using the
QIAmp DNA Micro Kit (Qiagen) and quantified by
NanoDrop 2000 UV-Vis (Thermo Scientific).

MFA-seq analysis

The DNA from early S and G2/M phases were ana-
lyzed by Marker Frequency Analysis (MFA-seq).
Firstly, the samples were prepared to library and se-
quencing Illumina at the Polyomics Glasgow Center
(University of Glasgow, Scotland) and the paired-
reads obtained for each sample were pre-processed by
an in-house pipeline for exclude contaminants from
Phix using Bowtie2 [63], filtering and trimming low
quality reads, using the Trimmomatic (version 0.36,
parameters: ILLUMINACLIP:NextGenPrimerAdapter-
sUniVec.fa:2:30:10, LEADING:5, TRAILING:5, SLI-
DINGWINDOW:15:25, MINLEN:35, HEADCROP:0)
to exclude vector, adapter and index sequences. The
paired-reads were aligned to the reference genome of T.
cruzi, CL Brener strain (TriTrypDB release 32, version 2015-
12-07; CLBrenerNonEsmeraldo-like: https://tritrypdb.org/
common/downloads/release-32/TcruziCLBrenerNon-Esmer-
aldo-like/fasta/data/TriTrypDB-32_TcruziCLBrenerNon-
Esmeraldo-like_Genome.fasta, and CLBrenerEsmeraldo-like
https://tritrypdb.org/common/downloads/release-32/Tcru-
ziCLBrenerEsmeraldo-like/fasta/data/TriTrypDB-32_Tcru-
ziCLBrenerEsmeraldo-like_Genome.fasta). The pipeline for
origin (ORI) regions prediction was composed by four main
steps: (i) getting the fold change between S/G2 phases and
calculating the coverage values in fixed bins of 2.5 kb regions
along each chromosome; S/G2 enrichment by fold change
analysis were classified by the arbitrarily percentile rank of
2% most significant with FDR lower than 0.05. (ii) estimating
the fold change and enriched regions using the MACS2 soft-
ware (version 2.1.1) [64]; S/G2 enrichment were defined as
those genomic regions whose S/G2 fold changes were classi-
fied by the arbitrarily percentile rank of 5% most significant
with FDR lower than 0.05. (iii) applying a quality threshold
over the coverage estimation and (iv) obtaining the consen-
sus region between the first two steps. The S and G2 phase
paired-reads were aligned against the genomic sequences of
the Esmeraldo-like and non Esmeraldo-like haplotypes using
the software Bowtie2 v 2.2.9 [65], with the parameters “end-
to-end” whole paired-read alignment (—-very-sensitive),
reporting only the best alignment (-k 1) for paired-reads
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with multiple alignments; the mixed (—-no-mixed) and dis-
cordant (--no-discordant) alignments were discarded
followed by the subsequent elimination of duplicate reads
using the samtools program Ttmdup’. The .bam alignment
files were converted into .bed (using the tool ‘bedtools bam-
tobed’) format for later analyses. Using the genomic fasta file,
each chromosome were split out in fixed windows of 2.5Kb
size using the ‘bedtools makewindow’ function from bedtools
v2.27.1 package [66], then were calculated the number of
reads mapped in each one using ‘bedtools coverage’ function.
This process was conducted individually for each sample re-
sult. Finally, the coverage values were normalized by the total
of reads mapped in each condition and also to estimate the
ratio between S and G2 phases (fold change). Similarly, were
used S and G2 data to estimate peaks of enriched regions in
the genome using ‘macs2 callpeak’ function from MACS2
software, which uses a Poisson distribution to calculates a dy-
namic Poisson parameters for each region to obtain a distri-
bution having more flexibility than the negative binomial
distribution [64]. In both fold change results was applied a
threshold on the percentile of 0.98 for the S/G2 fold change
and 0.95 for the MACS2 predicted peaks. For MACS2 was
also applied a threshold on the g-value lower than 0.01. The
peaks above the thresholds were selected as enriched regions.
Finally, the genomic coordinates of both approaches (fold
change and MACS2) were crossed in order to establish a
consensus of enriched regions denominated as ORIs. Using
the ‘bedtools intersect’ function, the regions overlapping in at
least one base were elected as significantly enriched regions
between S and G2. Subsequently, the data were integrated
with other genomic information such as %AT-GC contents,
UTR regions, CDS, genes, transcripts, etc. Data integration
was performed through a joint plot of experimental and gen-
omic information using the Gviz version 1.20.0 package [67]
and the in house webtool (Inada et al., 2018, unpublished)..
The datasets generated and/or analyzed during the current
study are available in the NCBI BioProject repository, under
the accession code PRINA635749 (MFA-seq bioproject) and
BioSample codes SAMN15052360 (Epimastigote at G2 stage,
replicate 1), SAMN15052361 (Epimastigote at G2 stage, rep-
licate 2), SAMN15052345 (Epimastigote at S stage, replicate
1), and SAMN15052356 (Epimastigote at S stage, replicate 2)
(see Table 2 for details).

GC content estimation

The predicted ORI consensus regions were used to
estimate the GC-content and presented an average
size of 1083 bp. Each one of the chromosomes from P
and S haplotypes were binned into 1083 bp sections,
and the average value across each bin was used to
calculate the mean and the standard deviation of GC-
content for each chromosome, considering the whole
chromosome. To compare the GC-content between
predicted ORIs and genomic region, we took 30,000
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Table 2 The NCBI Accessions for the BioProject, BioSamples and
respective raw data files related to MFA-Seq analysis

Description Accession
BioProject Trypanosoma cruzi Epimastigote MFA- PRINA635749

seq
BioSample Epimastigote G2-phase Replicate 1 SAMN15052360
Experiment Epimastigote G2-phase R1 SRX8421487
Rawdata Tcruzi_G2phaseReplicate1_R1 fastq.bz2 SRR11871783
BioSample Epimastigote G2-phase Replicate 2 SAMN15052361
Experiment Epimastigote G2-phase R2 SRX8421488
Rawdata Tcruzi_G2phaseReplicate2_R1 fastq.bz2 SRR11871782
BioSample Epimastigote S-phase Replicate 1 SAMN 15052345
Experiment Epimastigote S-phase R1 SRX8421489
Rawdata Tcruzi_SphaseReplicate1_R1 fastg.bz2 SRR11871781
BioSample Epimastigote S-phase Replicate 2 T. cruzi  SAMN15052356
Experiment Epimastigote S-phase R2 SRX8421490
Rawdata Tcruzi_SphaseReplicate?2_R1 fastq.bz2 SRR11871780

random samples, ranging from 1 up to 30 bins for
each chromosome, in accordance to the maximum
predicted ORIs in one chromosome by MACS2 soft-
ware. The genomic regions with zero GC-content
were removed from the samples. The mean and
standard deviation of GC-content were estimated for
all bins in each chromosome, and further for each
sample, them a final estimation for each genome was
calculated between all samples.

Detection of single nucleotide polymorphism (SNP)

The analyses and parameters were defined and con-
ducted as previously described [68]. Briefly, the sequen-
cing data were aligned using the BWA v0.7.12-r1039
program [69]. After the alignment, the SNPs were pre-
dicted using the GATK v3.7 tool (Genome Analysis
Toolkit) [68], based on the best practices and standard
protocol  (https://software.broadinstitute.org/gatk/best-
practices/). The predicted SNPs, along the entire gen-
ome of T. cruzi, were subsequently submitted to a qual-
ity control filter (60.0, MQ>40.0 - the Root Mean
Square of the mapping quality of the reads across all
samples; MQRankSum > -12.5 - An u-based z-
approximation from the Mann-Whitney Rank Sum Test
for mapping qualities; ReadPosRankSum > — 8.0 - the u-
based z-approximation from the Mann-Whitney Rank
Sum Test for the distance from the end of the read for
reads with the alternate allele).

Analysis of syntheny

Syntenic regions between P and S chromosomes were
identified using BLASTn [70] alignments (E-value: 1E-
05), followed by visualization in Artemis Comparison
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Tool (ACT) [71]. Annotations of chromosome replica-
tion origin regions were added based on Table S8
and S9.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-06803-8.

Additional file 1. Origins location related to genomic features of T. cruzi
chromosomes. Chromosomes from S (upper panel) and P (lower panel)
haplotypes are presented. Density peaks detected at the fold change
strategy (a) and the consensus peaks (b) were plotted to each T. cruzi
chromosome. In the graphs also depicted the GC content (c) along the
chromosome and the directional gene clusters (d). Green and purple bars
correspond to DGCs that are transcribed in positive and negative strand
respectively.

Additional file 2. Distribution of consensus replication origin regions
located at DGF-1 genes according to their location at conserved (C- top)
or disrupted (C-intermediate) T. cruzi genome domains (according to
(43)). Both (B-below) represents DGF-1 containing origins that could be in
either one domain. B. Examples of replication origins domains at con-
served, disrupted and in between both domains. According to (43), DGF-
1, RHS and GP63 (orange) may be located either at disrupted (red) or
conserved (blue) compartments. The T. cruzi genome was loaded at
UCSC genome browser and these 3 gene groups were colored in accord-
ance. ORIs genome coordenates are shown in blue.

Additional file 3. Analysis of ORIs found at both R1 and R2 replicates. A.
Consensus origin regions from replicates 1 (R1) and 2 (R2) were
considered overlaped if they share at least one nucleotide. 60% (15/25)
and 27% (3/11) of overlapped origins were located at DGF-1 genes in
Esmeraldo-like and Non Esmeraldo like haplotype. B. Origins that were
mapped at CDS were evaluated according their chromosome location.

Additional file 4. Schematic representation of a T. cruzi genomic region.
CDSs are represented in green or purple vertical lines. Clusters of CDSs
that are transcribed in the same direction represent a DGC. Arrows
indicate the orientation of transcription. Green arrow is the transcription
orientation of genes transcribed in positive strand (green) or in negative
one (purple).

Additional file 5. Distribution of ORIs among DGF-1 genes. A. Scatter
plot of DGF-1 genes distribution according their gene size (in bp). Total
DGF-1 and DGF-1 containing replication origins were compared regard-
ing their gene size. *P-value < 0.005 — unpaired Welch T-test. B. Presence
of ORIs in DGF-1 genes or pseudogenes. C. Presence of ORIs in DGF-1
genes/pseudogenes within DGFF-1 in tandemly arrays or at isolated DGF-
1.

Additional file 6. Percentage of genes (in base pairs) in T. cruzi
genome. The percentage of indicated genes belonging to the multigene
family is represented for Sand P haplotypes. Sizes of genes in base pairs
were normalized to the genome size.

Additional file 7. Transcription orientation along chromosomes. Overall
gene density and transcription orientation along each chromosome in S
haplotype (A) and P haplotype () Genes transcribed in the negative
strand; (+) genes transcribed in the positive strand.

Additional file 8: Table S1. Total number of raw paired-end reads for
each sample and respective replicate, followed by the high quality
paired-end reads after the pre-processing quality approach and the per-
centage of mapped paired-end reads in the CL Brenner EL and NEL gen-
ome haplotypes. Table S2. The average of %Genome coverage based
on paired-end reads for each sample mapped to the genome haplotypes,
based on the paired-end reads with highest mapping quality. Table S3.
Filtered fold change analysis and MACS2 of MFA-seq in non-Esmeraldo-
like haplotype Table S4. Filtered fold change analysis and MACS2 of
MFA-seq in non-Esmeraldo-like haplotype (replicate 2) Table S5. Filtered
fold change analysis and MACS2 of MFA-seq in Esmeraldo-like haplotype
Table S6. Filtered fold change analysis and MACS2 of MFA-seq in

Esmeraldo-like haplotype (replicate 2) Table S7. Comparison between
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MFA-seq peaks detected at replicates 1 and 2 Table S8. Position of MFA-
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