105 research outputs found

    Metric of a tidally distorted, nonrotating black hole

    Full text link
    The metric of a tidally distorted, nonrotating black hole is presented in a light-cone coordinate system that penetrates the event horizon and possesses a clear geometrical meaning. The metric is expressed as an expansion in powers of r/R << 1, where r is a measure of distance from the black hole and R is the local radius of curvature of the external spacetime; this is assumed to be much larger than M, the mass of the black hole. The metric is calculated up to a remainder of order (r/R)^4, and it depends on a family of tidal gravitational fields which characterize the hole's local environment. The coordinate system allows an easy identification of the event horizon, and expressions are derived for its surface gravity and the rates at which the tidal interaction transfers mass and angular momentum to the black hole.Comment: 4 pages. Final version, as it will appear in Physical Review Letter

    Construction of the second-order gravitational perturbations produced by a compact object

    Full text link
    Accurate calculation of the gradual inspiral motion in an extreme mass-ratio binary system, in which a compact-object inspirals towards a supermassive black-hole requires calculation of the interaction between the compact-object and the gravitational perturbations that it induces. These metric perturbations satisfy linear partial differential equations on a curved background spacetime induced by the supermassive black-hole. At the point particle limit the second-order perturbations equations have source terms that diverge as r−4r^{-4}, where rr is the distance from the particle. This singular behavior renders the standard retarded solutions of these equations ill-defined. Here we resolve this problem and construct well-defined and physically meaningful solutions to these equations. We recently presented an outline of this resolution [E. Rosenthal, Phys. Rev. D 72, 121503 (2005)]. Here we provide the full details of this analysis. These second-order solutions are important for practical calculations: the planned gravitational-wave detector LISA requires preparation of waveform templates for the expected gravitational-waves. Construction of templates with desired accuracy for extreme mass-ratio binaries requires accurate calculation of the inspiral motion including the interaction with the second-order gravitational perturbations.Comment: 30 page

    Colliding axisymmetric pp-waves

    Get PDF
    An exact solution is found describing the collision of axisymmetric pp-waves with M=0. They are impulsive in character and their coordinate singularities become point curvature singularities at the boundaries of the interaction region. The solution is conformally flat. Concrete examples are given, involving an ultrarelativistic black hole against a burst of pure radiation or two colliding beam- like waves.Comment: 6 pages, REVTeX, some misprints are correcte

    Regularization of the second-order gravitational perturbations produced by a compact object

    Full text link
    The equations for the second-order gravitational perturbations produced by a compact-object have highly singular source terms at the point particle limit. At this limit the standard retarded solutions to these equations are ill-defined. Here we construct well-defined and physically meaningful solutions to these equations. These solutions are important for practical calculations: the planned gravitational-wave detector LISA requires preparation of waveform templates for the potential gravitational-waves. Construction of templates with desired accuracy for extreme mass ratio binaries, in which a compact-object inspirals towards a supermassive black-hole, requires calculation of the second-order gravitational perturbations produced by the compact-object.Comment: 12 pages, discussion expanded, to be published in Phys. Rev. D Rapid Communicatio

    Improved analysis of black hole formation in high-energy particle collisions

    Full text link
    We investigate formation of an apparent horizon (AH) in high-energy particle collisions in four- and higher-dimensional general relativity, motivated by TeV-scale gravity scenarios. The goal is to estimate the prefactor in the geometric cross section formula for the black hole production. We numerically construct AHs on the future light cone of the collision plane. Since this slice lies to the future of the slice used previously by Eardley and Giddings (gr-qc/0201034) and by one of us and Nambu (gr-qc/0209003), we are able to improve the prefactor estimates. The black hole production cross section increases by 40-70% in the higher-dimensional cases, indicating larger black hole production rates in future-planned accelerators than previously estimated. We also determine the mass and the angular momentum of the final black hole state, as allowed by the area theorem.Comment: 28 pages, 14 figures, references and minor comments adde

    An approximate binary-black-hole metric

    Get PDF
    An approximate solution to Einstein's equations representing two widely-separated non-rotating black holes in a circular orbit is constructed by matching a post-Newtonian metric to two perturbed Schwarzschild metrics. The spacetime metric is presented in a single coordinate system valid up to the apparent horizons of the black holes. This metric could be useful in numerical simulations of binary black holes. Initial data extracted from this metric have the advantages of being linked to the early inspiral phase of the binary system, and of not containing spurious gravitational waves.Comment: 20 pages, 1 figure; some changes in Sec. IV B,C and Sec.

    Close-limit analysis for head-on collision of two black holes in higher dimensions: Brill-Lindquist initial data

    Full text link
    Motivated by the TeV-scale gravity scenarios, we study gravitational radiation in the head-on collision of two black holes in higher dimensional spacetimes using a close-limit approximation. We prepare time-symmetric initial data sets for two black holes (the so-called Brill-Lindquist initial data) and numerically evolve the spacetime in terms of a gauge invariant formulation for the perturbation around the higher-dimensional Schwarzschild black holes. The waveform and radiated energy of gravitational waves emitted in the head-on collision are clarified. Also, the complex frequencies of fundamental quasinormal modes of higher-dimensional Schwarzschild black holes, which have not been accurately derived so far, are determined.Comment: 27 pages, 8 figures, published versio

    On leading order gravitational backreactions in de Sitter spacetime

    Get PDF
    Backreactions are considered in a de Sitter spacetime whose cosmological constant is generated by the potential of scalar field. The leading order gravitational effect of nonlinear matter fluctuations is analyzed and it is found that the initial value problem for the perturbed Einstein equations possesses linearization instabilities. We show that these linearization instabilities can be avoided by assuming strict de Sitter invariance of the quantum states of the linearized fluctuations. We furthermore show that quantum anomalies do not block the invariance requirement. This invariance constraint applies to the entire spectrum of states, from the vacuum to the excited states (should they exist), and is in that sense much stronger than the usual Poincare invariance requirement of the Minkowski vacuum alone. Thus to leading order in their effect on the gravitational field, the quantum states of the matter and metric fluctuations must be de Sitter invariant.Comment: 12 pages, no figures, typos corrected and some clarifying comments added, version accepted by Phys. Rev.

    Gravitational Radiation from the radial infall of highly relativistic point particles into Kerr black holes

    Full text link
    In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss possible connections between these results and the black hole-black hole collision at the speed of light process. With these results at hand, we predict that during the high speed collision of a non-rotating hole with a rotating one, about 35% of the total energy can get converted into gravitational waves. Thus, if one is able to produce black holes at the Large Hadron Collider, as much as 35% of the partons' energy should be emitted during the so called balding phase. This energy will be missing, since we don't have gravitational wave detectors able to measure such amplitudes. The collision at the speed of light between one rotating black hole and a non-rotating one or two rotating black holes turns out to be the most efficient gravitational wave generator in the Universe.Comment: 15 pages, REVTEX4. Some comments and references adde

    Second-order gravitational self-force

    Get PDF
    We derive an expression for the second-order gravitational self-force that acts on a self-gravitating compact-object moving in a curved background spacetime. First we develop a new method of derivation and apply it to the derivation of the first-order gravitational self-force. Here we find that our result conforms with the previously derived expression. Next we generalize our method and derive a new expression for the second-order gravitational self-force. This study also has a practical motivation: The data analysis for the planned gravitational wave detector LISA requires construction of waveforms templates for the expected gravitational waves. Calculation of the two leading orders of the gravitational self-force will enable one to construct highly accurate waveform templates, which are needed for the data analysis of gravitational-waves that are emitted from extreme mass-ratio binaries.Comment: 35 page
    • …
    corecore