6 research outputs found

    The Human Brain Encodes Event Frequencies While Forming Subjective Beliefs

    Get PDF
    To make adaptive choices, humans need to estimate the probability of future events. Based on a Bayesian approach, it is assumed that probabilities are inferred by combining a priori, potentially subjective, knowledge with factual observations, but the precise neurobiological mechanism remains unknown. Here, we study whether neural encoding centers on subjective posterior probabilities, and data merely lead to updates of posteriors, or whether objective data are encoded separately alongside subjective knowledge. During fMRI, young adults acquired prior knowledge regarding uncertain events, repeatedly observed evidence in the form of stimuli, and estimated event probabilities. Participants combined prior knowledge with factual evidence using Bayesian principles. Expected reward inferred from prior knowledge was encoded in striatum. BOLD response in specific nodes of the default mode network (angular gyri, posterior cingulate, and medial prefrontal cortex) encoded the actual frequency of stimuli, unaffected by prior knowledge. In this network, activity increased with frequencies and thus reflected the accumulation of evidence. In contrast, Bayesian posterior probabilities, computed from prior knowledge and stimulus frequencies, were encoded in bilateral inferior frontal gyrus. Here activity increased for improbable events and thus signaled the violation of Bayesian predictions. Thus, subjective beliefs and stimulus frequencies were encoded in separate cortical regions. The advantage of such a separation is that objective evidence can be recombined with newly acquired knowledge when a reinterpretation of the evidence is called for. Overall this study reveals the coexistence in the brain of an experience-based system of inference and a knowledge-based system of inference

    Correspondence: Are Cognitive Functions Localizable? Colin Camerer et al. versus Marieke van Rooij and John G. Holden

    Get PDF
    The Fall 2011 issue of this journal published a two-paper section on “Neuroeconomics.” One paper, by Ernst Fehr and Antonio Rangel, clearly and concisely summarized a small part of the fast-growing literature. The second paper, “It’s about Space, It’s about Time, Neuroeconomics, and the Brain Sublime,” by Marieke van Rooij and Guy Van Orden, is beautifully written and enjoyable to read, but misleading in many critical ways. A number of economists and neuroscientists working at the intersection of the two fields shared our reaction and have signed this letter, as shown below. Some of the paper’s descriptions of empirical findings and methods in neuroeconomics are incomplete, badly out of date, or flatly wrong. In studies the authors describe in detail, their skeptical interpretations have often been refuted by published data, old and new, that they overlook

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Decision Making: How the Brain Weighs the Evidence

    No full text
    The brain has to weigh incoming sensory evidence against prior beliefs, the relative weight given to each depending on the relative uncertainties. Neuroscience now shows how the human brain accomplishes this
    corecore