3,177,556 research outputs found

    Mitigation and screening for environmental assessment

    Get PDF
    This article considers how, as a matter of law and policy, mitigation measures should be taken into account in determining whether a project will have significant environmental effects and therefore be subject to assessment under the EU Environmental Impact Assessment (EIA) Directive. This is not straightforward: it is problematic to distinguish clearly between an activity and the measures proposed to minimise or mitigate for the adverse consequences of the activity. The issue is a salient one in impact assessment law, but under-explored in the literature and handled with some difficulty by the courts. I argue that there is an unnecessarily and undesirably narrow approach currently taken under the EIA Directive, which could be improved upon by taking a more adaptive approach; alternatively a heightened standard of review of ‘significance’, and within this of the scope for mitigation measures to bring projects beneath the significance threshold, may also be desirable

    Difference Methods for Boundary Value Problems in Ordinary Differential Equations

    Get PDF
    A general theory of difference methods for problems of the form Ny ≡ y' - f(t,y) = O, a ≦ t ≦ b, g(y(a),y(b))= 0, is developed. On nonuniform nets, t_0 = a, t_j = t_(j-1) + h_j, 1 ≦ j ≦ J, t_J = b, schemes of the form N_(h)u_j = G_j(u_0,•••,u_J) = 0, 1 ≦ j ≦ J, g(u_0,u_J) = 0 are considered. For linear problems with unique solutions, it is shown that the difference scheme is stable and consistent for the boundary value problem if and only if, upon replacing the boundary conditions by an initial condition, the resulting scheme is stable and consistent for the initial value problem. For isolated solutions of the nonlinear problem, it is shown that the difference scheme has a unique solution converging to the exact solution if (i) the linearized difference equations are stable and consistent for the linearized initial value problem, (ii) the linearized difference operator is Lipschitz continuous, (iii) the nonlinear difference equations are consistent with the nonlinear differential equation. Newton’s method is shown to be valid, with quadratic convergence, for computing the numerical solution

    J-hook latching device

    Get PDF
    Described here is a latching device for latching two items together that has a housing and a shaft mounted to one item such that rotation of the shaft by a sprocket causes the shaft to move longitudinally up and down. The shaft has one end extending beyond the housing with an alignment cone attached to this end for engaging a receptor on the other item. A latch mounted to a shaft by a traveling nut provides a pivot point for the latch so that rotation of the shaft causes the pivot point of the latch to translate along the longitudinal axis of the shaft. Camming surfaces and a camming spring are used for rotating the latch so that the latch will engage and disengage a receptor on the other item
    • …
    corecore