502 research outputs found

    Of autoregressive continuous time model parameters estimation

    Get PDF
    This article revisits a sequential approach to the estimation of the parameter in a first-order autoregressive model (AR(1)) with continuous time. There is provided a numerical study to get a results of sequential estimations of the parameter in first-order autoregressive model with continuous time and is computed a stopping rule and the optimal time of observations. Also there is provided a comparing analysis of estimation results with using the sequential approach both the optimal time of observations

    Survival differences and associated molecular signatures of DNMT3A-mutant acute myeloid leukemia patients

    Get PDF
    Acute myeloid leukemia (AML) is a very heterogeneous and highly malignant blood cancer. Mutations of the DNA methyltransferase DNMT3A are among the most frequent recurrent genetic lesions in AML. The majority of DNMT3A-mutant AML patients shows fast relapse and poor survival, but also patients with long survival or long-term remission have been reported. Underlying molecular signatures and mechanisms that contribute to these survival differences are only poorly understood and have not been studied in detail so far. We applied hierarchical clustering to somatic gene mutation profiles of 51 DNMT3A-mutant patients from The Cancer Genome Atlas (TCGA) AML cohort revealing two robust patient subgroups with profound differences in survival. We further determined molecular signatures that distinguish both subgroups. Our results suggest that FLT3 and/or NPM1 mutations contribute to survival differences of DNMT3A-mutant patients. We observed an upregulation of genes of the p53, VEGF and DNA replication pathway and a downregulation of genes of the PI3K-Akt pathway in short- compared to long-lived patients. We identified that the majority of measured miRNAs was downregulated in the short-lived group and we found differentially expressed microRNAs between both subgroups that have not been reported for AML so far (miR-153-2, miR-3065, miR-95, miR-6718) suggesting that miRNAs could be important for prognosis. In addition, we learned gene regulatory networks to predict potential major regulators and found several genes and miRNAs with known roles in AML pathogenesis, but also interesting novel candidates involved in the regulation of hematopoiesis, cell cycle, cell differentiation, and immunity that may contribute to the observed survival differences of both subgroups and could therefore be important for prognosis. Moreover, the characteristic gene mutation and expression signatures that distinguished short- from long-lived patients were also predictive for independent DNMT3A-mutant AML patients from other cohorts and could also contribute to further improve the European LeukemiaNet (ELN) prognostic scoring system. Our study represents the first in-depth computational approach to identify molecular factors associated with survival differences of DNMT3A-mutant AML patients and could trigger additional studies to develop robust molecular markers for a better stratification of AML patients with DNMT3A mutations

    Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts

    Get PDF
    The transition from quiescence to proliferation is a key regulatory step that can be induced by serum stimulation in cultured fibroblasts. The transcription factor Myc is directly induced by serum mitogens and drives a secondary gene expression program that remains largely unknown. Using mRNA profiling, we identify close to 300 Myc-dependent serum response (MDSR) genes, which are induced by serum in a Myc-dependent manner in mouse fibroblasts. Mapping of genomic Myc-binding sites by ChIP-seq technology revealed that most MDSR genes were directly targeted by Myc, but represented a minor fraction (5.5%) of all Myc-bound promoters (which were 22.4% of all promoters). Other target loci were either induced by serum in a Myc-independent manner, were not significantly regulated or were negatively regulated. MDSR gene products were involved in a variety of processes, including nucleotide biosynthesis, ribosome biogenesis, DNA replication and RNA control. Of the 29 MDSR genes targeted by RNA interference, three showed a requirement for cell-cycle entry upon serum stimulation and 11 for long-term proliferation and/or survival. Hence, proper coordination of key regulatory and biosynthetic pathways following mitogenic stimulation relies upon the concerted regulation of multiple Myc-dependent genes

    Complex genotype-phenotype relationships shape the response to treatment of down syndrome childhood acute lymphoblastic leukaemia

    Get PDF
    Extensive genetic and epigenetic variegation has been demonstrated in many malignancies. Importantly, their interplay has the potential to contribute to disease progression and treatment resistance. To shed light on the complex relationships between these different sources of intra-tumour heterogeneity, we explored their relative contributions to the evolutionary dynamics of Acute Lymphoblastic Leukaemia (ALL) in children with Down syndrome, which has particularly poor prognosis. We quantified the tumour propagating potential of genetically distinct sub-clones using serial transplantation assays and SNP-arrays. While most leukaemias were characterized by a single dominant subclone, others were highly heterogeneous. Importantly, we provide clear and direct evidence that genotypes and phenotypes with functional relevance to leukemic progression and treatment resistance can co-segregate within the disease. Hence, individual genetic lesions can be restricted to well-defined cell immunophenotypes, corresponding to different stages of the leukemic differentiation hierarchy and varied proliferation potentials. As a result of this difference in fitness, which can be accurately quantified via competitive transplantation assays, matching diagnostic, post-treatment, and relapse leukaemias can be dominated by different genotypes, including pre-leukemic clones persisting throughout the disease progression and treatment. Intriguingly, plasticity also appears to be a temporally defined property that can segregate with genotype. These results suggest that Down Syndrome ALL should be viewed as a complex matrix of cells exhibiting genetic and epigenetic heterogeneity that foster extensive clonal evolution and competition. Therapeutic intervention reshapes this ‘eco-system’ and may provide the right conditions for the preferential expansion of selected compartments and subsequently relapse

    c-myc

    Full text link
    The c-myc proto-oncogene, crucial for the progression of many human cancers, has been implicated in key cellular processes in diverse cell types, including endothelial cells that line the blood vessels and are critical for angiogenesis. The de novo differentiation of endothelial cells is known as vasculogenesis, while the growth of new blood vessels from pre-existing vessels is known as angiogenesis. To ascertain the function of c-myc in vascular development, we deleted c-myc in selected cell lineages. Embryos lacking c-myc in endothelial and hematopoietic lineages phenocopied those lacking c-myc in the entire embryo proper. At embryonic day (e)10.5, both mutant embryos were grossly normal, had initiated primitive hematopoiesis, and both survived until e11.5–12.5, longer than the complete null. However, they progressively developed defective hematopoiesis and angiogenesis. The majority of embryos lacking c-myc specifically in hematopoietic cells phenocopied those lacking c-myc in endothelial and hematopoietic lineages, with impaired definitive hematopoiesis as well as angiogenic remodeling. c-myc is required for embryonic hematopoietic stem cell differentiation, through a cell-autonomous mechanism. Surprisingly, c-myc is not required for vasculogenesis in the embryo. c-myc deletion in endothelial cells does not abrogate endothelial proliferation, survival, migration, or capillary formation. Embryos lacking c-myc in a majority of endothelial cells can survive beyond e12.5. Our findings reveal that hematopoiesis is a major function of c-myc in embryos and support the notion that c-myc functions in selected cell lineages rather than a ubiquitous manner in mammalian development

    Identification of DNA methylation changes at cis-regulatory elements during early steps of HSC differentiation using tagmentation-based whole genome bisulfite sequencing

    No full text
    Epigenetic alterations during cellular differentiation are a key molecular mechanism which both instructs and reinforces the process of lineage commitment. Within the haematopoietic system, progressive changes in the DNA methylome of haematopoietic stem cells (HSCs) are essential for the effective production of mature blood cells. Inhibition or loss of function of the cellular DNA methylation machinery has been shown to lead to a severe perturbation in blood production and is also an important driver of malignant transformation. HSCs constitute a very rare cell population in the bone marrow, capable of life-long self-renewal and multi-lineage differentiation. The low abundance of HSCs has been a major technological barrier to the global analysis of the CpG methylation status within both HSCs and their immediate progeny, the multipotent progenitors (MPPs). Within this Extra View article, we review the current understanding of how the DNA methylome regulates normal and malignant hematopoiesis. We also discuss the current methodologies that are available for interrogating the DNA methylation status of HSCs and MPPs and describe a new data set that was generated using tagmentation-based whole genome bisulfite sequencing (TWGBS) in order to comprehensively map methylated cytosines using the limited amount of genomic DNA that can be harvested from rare cell populations. Extended analysis of this data set clearly demonstrates the added value of genome-wide sequencing of methylated cytosines and identifies novel important cis-acting regulatory regions that are dynamically remodeled during the first steps of haematopoietic differentiation

    Enzyme self-label-bound ATTO700 in single-molecule and super-resolution microscopy

    Get PDF
    Herein, we evaluate near-infrared ATTO700 as an acceptor in SNAP- and Halo-tag protein labelling for Förster Resonance Energy Transfer (FRET) by ensemble and single molecule measurements. Microscopy of cell surface proteins in live cells is perfomed including super-resolution stimulated emission by depletion (STED) nanoscopy

    A Novel Technique to Label Cover Crop Biomass Using Stable Isotopes

    Get PDF
    Stable isotopes can be used as tracers for carbon and nitrogen pathways being a great tool to track nutrients in integrated systems. The objective of this experiment was to understand the partitioning of 15N and 13C within cover crop plants when they were labeled with stable isotopes, using chambers under field conditions. Cover crops were planted at the University of Florida, North Florida Research and Education Center-Marianna, located in Marianna, FL. Treatments were four cover crops, in which one was considered a typical cover crop system and the other three consisted of an integrated crop-livestock system with or without the inclusion of legume or different nitrogen fertilizer rates grazed every two weeks. All treatments were replicated three times in a randomized complete block design. Two chambers were built and placed in each plot to label the cover crop plants. For the 15N labeling, 15N2-labeled urea (98 atom% 15N) was applied at a rate of 0.5 kg N ha-1 only once. The target amount of 13CO2 (99 atom% 13C) was determined considering a 20% enrichment of the CO2 concentration present inside the chamber’s volume. The 13CO2 labeling was performed for 28 consecutive days. The labeling technique using chambers and stable isotopes to enrich cover crop species worked under field conditions for both, grass and legume species. Moving forward, this labeling technique can be a useful tool to track nutrient pathways, especially litter decomposition in diversified integrated crop and livestock systems under different management practices

    Temporal multi-omics identifies LRG1 as a vascular niche instructor of metastasis

    Get PDF
    Metastasis is the primary cause of cancer-related mortality. Tumor cell interactions with cells of the vessel wall are decisive and potentially rate-limiting for metastasis. The molecular nature of this cross-talk is, beyond candidate gene approaches, hitherto poorly understood. Using endothelial cell (EC) bulk and single-cell transcriptomics in combination with serum proteomics, we traced the evolution of the metastatic vascular niche in surgical models of lung metastasis. Temporal multiomics revealed that primary tumors systemically reprogram the body’s vascular endothelium to perturb homeostasis and to precondition the vascular niche for metastatic growth. The vasculature with its enormous surface thereby serves as amplifier of tumor-induced instructive signals. Comparative analysis of lung EC gene expression and secretome identified the transforming growth factor–β (TGFβ) pathway specifier LRG1, leucine-rich alpha-2-glycoprotein 1, as an early instructor of metastasis. In the presence of a primary tumor, ECs systemically up-regulated LRG1 in a signal transducer and activator of transcription 3 (STAT3)–dependent manner. A meta-analysis of retrospective clinical studies revealed a corresponding up-regulation of LRG1 concentrations in the serum of patients with cancer. Functionally, systemic up-regulation of LRG1 promoted metastasis in mice by increasing the number of prometastatic neural/glial antigen 2 (NG2)+ perivascular cells. In turn, genetic deletion of Lrg1 hampered growth of lung metastasis. Postsurgical adjuvant administration of an LRG1-neutralizing antibody delayed metastatic growth and increased overall survival. This study has established a systems map of early primary tumor-induced vascular changes and identified LRG1 as a therapeutic target for metastasis
    corecore