274 research outputs found

    Evidence of Nodal Line in the Superconducting Gap Symmetry of Noncentrosymmetric ThCoC2_{2}

    Full text link
    The newly discovered noncentrosymmetric superconductor ThCoC2_{2} exhibits numerous unconventional behavior in the field dependent heat capacity data. Here we present the first measurement of the gap symmetry of ThCoC2_{2} by muon spin rotation/relaxation (μ(\muSR) measurements. Temperature dependence of the magnetic penetration depth measured using the transverse field μ\muSR measurement reveal the evidence of nodal pairing symmetry. To understand these findings, we carry out the calculations of superconducting pairing eigenvalue and eigenfunction symmetry due to the spin-fluctuation mechanism, by directly implemented the {\it ab-initio} band structures. We find that the system possesses a single Fermi surface with considerable three-dimensionality, and hence a strong nesting along the kzk_z-direction. Such a nesting promotes a superconducting pairing with a coskz\cos{k_z}-like symmetry with a prominent nodal line on the kz=±π/2k_z=\pm\pi/2 plane. The result agrees well with the experimental data.Comment: 3 pages, 5 figure

    Physical properties of noncentrosymmetric superconductor LaIrSi3: A {\mu}SR study

    Full text link
    The results of heat capacity C_p(T, H) and electrical resistivity \rho(T,H) measurements down to 0.35 K as well as muon spin relaxation and rotation (\muSR) measurements on a noncentrosymmetric superconductor LaIrSi3 are presented. Powder neutron diffraction confirmed the reported noncentrosymmetric body-centered tetragonal BaNiSn3-type structure (space group I4\,mm) of LaIrSi3. The bulk superconductivity is observed below T_c = 0.72(1) K. The intrinsic \Delta C_e/\gamma_n T_c = 1.09(3) is significantly smaller than the BCS value of 1.43, and this reduction is accounted by the \alpha-model of BCS superconductivity. The analysis of the superconducting state C_e(T) data by the single-band \alpha-model indicates a moderately anisotropic order parameter with the s-wave gap \Delta(0)/k_B T_c = 1.54(2) which is lower than the BCS value of 1.764. Our estimates of various normal and superconducting state parameters indicate a weakly coupled electron-phonon driven type-I s-wave superconductivity in LaIrSi3. The \muSR results also confirm the conventional type-I superconductivity in LaIrSi3 with a preserved time reversal symmetry and hence a singlet pairing superconducting ground state.Comment: 11 pages, 8 figures, 2 table

    Light-ion production in the interaction of 175 MeV quasi-mono-energetic neutrons with iron and with bismuth

    Full text link
    Nuclear data for neutron-induced reactions in the intermediate energy range of 20 to 200 MeV are of great importance for the development of nuclear reaction codes since little data exist in that range. Also several different applications benefit from such data, notably accelerator-driven incineration of nuclear waste. The Medley setup was used for a series of measurements of p, d, t, 3^3He and α\alpha-particle production by 175 MeV quasi-mono-energetic neutrons on various target nuclei. The measurements were performed at the The Svedberg Laboratory in Uppsala, Sweden. Eight detector telescopes placed at angles between 20^\circ and 160^\circ were used. Medley uses the ΔE\Delta E-ΔE\Delta E-EE technique to discriminate among the particle types and is able to measure double-differential cross sections over a wide range of particle energies. This paper briefly describes the experimental setup, summarizes the data analysis and reports on recent changes in the previously reported preliminary data set on bismuth. Experimental data are compared with INCL4.5-Abla07, MCNP6 using CEM03.03, TALYS and PHITS model calculations as well as with nuclear data evaluations. The models agree fairly well overall but in some cases systematic differences are found.Comment: 16 pages, 19 figures; submitted to Phys. Rev.

    Recent advances of metabolomics in plant biotechnology

    Get PDF
    Biotechnology, including genetic modification, is a very important approach to regulate the production of particular metabolites in plants to improve their adaptation to environmental stress, to improve food quality, and to increase crop yield. Unfortunately, these approaches do not necessarily lead to the expected results due to the highly complex mechanisms underlying metabolic regulation in plants. In this context, metabolomics plays a key role in plant molecular biotechnology, where plant cells are modified by the expression of engineered genes, because we can obtain information on the metabolic status of cells via a snapshot of their metabolome. Although metabolome analysis could be used to evaluate the effect of foreign genes and understand the metabolic state of cells, there is no single analytical method for metabolomics because of the wide range of chemicals synthesized in plants. Here, we describe the basic analytical advancements in plant metabolomics and bioinformatics and the application of metabolomics to the biological study of plants

    In-medium nuclear interactions of low-energy hadrons

    Full text link
    Experimental and theoretical developments of the last decade in the study of exotic atoms and some related low-energy reactions are reviewed, in order to provide information on the in-medium hadron-nucleon t matrix over a wide range of densities up to central nuclear densities. In particular, we review pionic deeply bound atomic states and related evidence for partial restoration of chiral symmetry in dense nuclear matter. The case for relatively narrow deeply bound atomic states for antikaons and antiprotons is made, based on the physics of strong nuclear absorption. Recent experimental suggestions for signals of antikaon-nuclear deeply bound states are reviewed, and dynamical models for calculating binding energies, widths and densities of antikaon nuclear states are discussed. Specific features of low-energy in-medium interactions of kaons, antiprotons and of Sigma hyperons are discussed, and suggestions to study experimentally Cascade atoms are reviewed.Comment: 86 pages, 44 figures, slight revisions, references added, Physics Reports (in press

    Identification of distinct human invariant natural killer T-cell response phenotypes to alpha-galactosylceramide.

    Get PDF
    Background Human CD1d-restricted, invariant natural killer T cells (iNKT) are a unique class of T lymphocytes that recognise glycolipid antigens such as α-galactosylceramide (αGalCer) and upon T cell receptor (TCR) activation produce both Th1 and Th2 cytokines. iNKT cells expand when cultured in-vitro with αGalCer and interleukin 2 (IL-2) in a CD1d-restricted manner. However, the expansion ratio of human iNKT cells varies between individuals and this has implications for attempts to manipulate this pathway therapeutically. We have studied a panel of twenty five healthy human donors to assess the variability in their in-vitro iNKT cell expansion responses to stimulation with CD1d ligands and investigated some of the factors that may influence this phenomenon. Results Although all donors had comparable numbers of circulating iNKT cells their growth rates in-vitro over 14 days in response to a range of CD1d ligands and IL-2 were highly donor-dependent. Two reproducible donor response patterns of iNKT expansion were seen which we have called 'strong' or 'poor' iNKT responders. Donor response phenotype did not correlate with age, gender, frequency of circulating iNKT, or with the CD1d ligand utilised. Addition of exogenous recombinant human interleukin 4 (IL-4) to 'poor' responder donor cultures significantly increased their iNKT proliferative capacity, but not to levels equivalent to that of 'strong' responder donors. However in 'strong' responder donors, addition of IL-4 to their cultures did not significantly alter the frequency of iNKT cells in the expanded CD3+ population. Conclusion (i) in-vitro expansion of human iNKT cells in response to CD1d ligand activation is highly donor variable, (ii) two reproducible patterns of donor iNKT expansion were observed, which could be classified into 'strong' and 'poor' responder phenotypes, (iii) donor iNKT response phenotypes did not correlate with age, gender, frequency of circulating iNKT cells, or with the CD1d ligand utilised, (iv) addition of IL-4 to 'poor' but not 'strong' responder donor cultures significantly increased their in-vitro iNKT cell expansion to αGalCer

    The effect of spin orbit interaction on the physical properties of LaTSi3 (T = Ir, Pd, and Rh): First-principles calculations

    Get PDF
    This is the final version of the article. Available from AIP Publishing via the DOI in this record.We have presented the structural, elastic, electronic, phononic, and electron-phonon interaction properties of the La-based noncentrosymmetric superconductors, such as LaIrSi3, LaRhSi3, and LaPdSi3, by using the generalized gradient approximation of the density functional theory. The calculated elastic constants reveal the mechanical stability of all the studied compounds in their noncentrosymmetric structure, while the lack of inversion symmetry gives rise to lift the degeneracy of their electronic bands, except in the Γ-Z and X-P directions. The calculated Eliashberg spectral function shows that all phonon branches of these materials couple considerably with electrons, and thus, all of them make contribution to the average electron-phonon coupling parameter λ. Using the calculated values of λ and the logarithmically averaged phonon frequency ωln, the superconducting critical temperature Tc values for LaIrSi3, LaRhSi3, and LaPdSi3 are estimated to be 0.89, 2.56, and 2.40 K, respectively, which accord very well with their corresponding experimental values of 0.77, 2.16, and 2.60 K.This work was supported by the Scientific and Technical Research Council of Turkey (TÜBİTAK) (Project No. MFAG-115F135)

    Discovery of naked charm particles and lifetime differences among charm species using nuclear emulsion techniques innovated in Japan

    Get PDF
    This is a historical review of the discovery of naked charm particles and lifetime differences among charm species. These discoveries in the field of cosmic-ray physics were made by the innovation of nuclear emulsion techniques in Japan. A pair of naked charm particles was discovered in 1971 in a cosmic-ray interaction, three years prior to the discovery of the hidden charm particle, J/Ψ, in western countries. Lifetime differences between charged and neutral charm particles were pointed out in 1975, which were later re-confirmed by the collaborative Experiment E531 at Fermilab. Japanese physicists led by K.Niu made essential contributions to it with improved emulsion techniques, complemented by electronic detectors. This review also discusses the discovery of artificially produced naked charm particles by us in an accelerator experiment at Fermilab in 1975 and of multiple-pair productions of charm particles in a single interaction in 1987 by the collaborative Experiment WA75 at CERN
    corecore