18 research outputs found

    Ab initio molecular dynamics simulations of Aluminum solvation

    Full text link
    The solvation of Al and its hydrolyzed species in water clusters has been studied by means of ab initio molecular dynamics simulations. The hexa-hydrate aluminum ion formed a stable complex in the finite temperature cluster simulation of one aluminum ion and 16 waters. The average dipole moment of strongly polarized hydrated water molecules in the first solvation shell of the hexa-hydrate aluminum ion was found to be 5.02 Debye. The deprotonated hexa-hydrate complex evolves into a tetra-coordinated aluminate ion with two water molecules in the second solvation shell forming hydrogen bonds to the hydroxyl groups in agreement with the observed coordination.Comment: 12 pages in Elsevier LaTeX, 5 figures in Postscript, 2 last figures are in color, submitted to Chemical Physics Letter

    Ab initio many-body calculations on infinite carbon and boron-nitrogen chains

    Full text link
    In this paper we report first-principles calculations on the ground-state electronic structure of two infinite one-dimensional systems: (a) a chain of carbon atoms and (b) a chain of alternating boron and nitrogen atoms. Meanfield results were obtained using the restricted Hartree-Fock approach, while the many-body effects were taken into account by second-order M{\o}ller-Plesset perturbation theory and the coupled-cluster approach. The calculations were performed using 6-31GG^{**} basis sets, including the d-type polarization functions. Both at the Hartree-Fock (HF) and the correlated levels we find that the infinite carbon chain exhibits bond alternation with alternating single and triple bonds, while the boron-nitrogen chain exhibits equidistant bonds. In addition, we also performed density-functional-theory-based local density approximation (LDA) calculations on the infinite carbon chain using the same basis set. Our LDA results, in contradiction to our HF and correlated results, predict a very small bond alternation. Based upon our LDA results for the carbon chain, which are in agreement with an earlier LDA calculation calculation [ E.J. Bylaska, J.H. Weare, and R. Kawai, Phys. Rev. B 58, R7488 (1998).], we conclude that the LDA significantly underestimates Peierls distortion. This emphasizes that the inclusion of many-particle effects is very important for the correct description of Peierls distortion in one-dimensional systems.Comment: 3 figures (included). To appear in Phys. Rev.
    corecore