32 research outputs found

    A seven-Gene Signature assay improves prognostic risk stratification of perioperative chemotherapy treated gastroesophageal cancer patients from the MAGIC trial

    Get PDF
    BACKGROUND: Following neoadjuvant chemotherapy for operable gastroesophageal cancer, lymph node metastasis is the only validated prognostic variable; however, within lymph node groups there is still heterogeneity with risk of relapse. We hypothesized that gene profiles from neoadjuvant chemotherapy treated resection specimens from gastroesophageal cancer patients can be used to define prognostic risk groups to identify patients at risk for relapse. PATIENTS AND METHODS: The Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) trial (n = 202 with high quality RNA) samples treated with perioperative chemotherapy were profiled for a custom gastric cancer gene panel using the NanoString platform. Genes associated with overall survival (OS) were identified using penalized and standard Cox regression, followed by generation of risk scores and development of a NanoString biomarker assay to stratify patients into risk groups associated with OS. An independent dataset served as a validation cohort. RESULTS: Regression and clustering analysis of MAGIC patients defined a seven-Gene Signature and two risk groups with different OS [hazard ratio (HR) 5.1; P < 0.0001]. The median OS of high- and low-risk groups were 10.2 [95% confidence interval (CI) of 6.5 and 13.2 months] and 80.9 months (CI: 43.0 months and not assessable), respectively. Risk groups were independently prognostic of lymph node metastasis by multivariate analysis (HR 3.6 in node positive group, P = 0.02; HR 3.6 in high-risk group, P = 0.0002), and not prognostic in surgery only patients (n = 118; log rank P = 0.2). A validation cohort independently confirmed these findings. CONCLUSIONS: These results suggest that gene-based risk groups can independently predict prognosis in gastroesophageal cancer patients treated with neoadjuvant chemotherapy. This signature and associated assay may help risk stratify these patients for post-surgery chemotherapy in future perioperative chemotherapy-based clinical trials

    Beyond knowing nature: Contact, emotion, compassion, meaning, and beauty are pathways to nature connection

    Get PDF
    Feeling connected to nature has been shown to be beneficial to wellbeing and pro-environmental behaviour. General nature contact and knowledge based activities are often used in an attempt to engage people with nature. However the specific routes to nature connectedness have not been examined systematically. Two online surveys (total n = 321) of engagement with, and value of, nature activities structured around the nine values of the Biophila Hypothesis were conducted. Contact, emotion, meaning, and compassion, with the latter mediated by engagement with natural beauty, were predictors of connection with nature, yet knowledge based activities were not. In a third study (n = 72), a walking intervention with activities operationalising the identified predictors, was found to significantly increase connection to nature when compared to walking in nature alone or walking in and engaging with the built environment. The findings indicate that contact, emotion, meaning, compassion, and beauty are pathways for improving nature connectedness. The pathways also provide alternative values and frames to the traditional knowledge and identification routes often used by organisations when engaging the public with nature.N/

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway

    Get PDF
    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks

    Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway.

    No full text
    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks

    Preparations for a European R&D roadmap for an inertial fusion demo reactor

    No full text
    A European consortium of 15 laboratories across nine nations have worked together under the EUROFusion Enabling Research grants for the past decade with three principle objectives. These are: (a) investigating obstacles to ignition on megaJoule-class laser facilities; (b) investigating novel alternative approaches to ignition, including basic studies for fast ignition (both electron and ion-driven), auxiliary heating, shock ignition, etc.; and (c) developing technologies that will be required in the future for a fusion reactor. A brief overview of these activities, presented here, along with new calculations relates the concept of auxiliary heating of inertial fusion targets, and provides possible future directions of research and development for the updated European Roadmap that is due at the end of 2020
    corecore