31 research outputs found

    Am. J. Hum. Genet.

    No full text
    Cranioectodermal dysplasia (CED) is a disorder characterized by craniofacial, skeletal, and ectodermal abnormalities. Most cases reported to date are sporadic, but a few familial cases support an autosomal-recessive inheritance pattern. Aiming at the elucidation of the genetic basis of CED, we collected 13 patients with CED symptoms from 12 independent families. In one family with consanguineous parents two siblings were affected, permitting linkage analysis and homozygosity mapping. This revealed a single region of homozygosity with a significant LOD score (3.57) on chromosome 3q21-3q24. By sequencing candidate genes from this interval we found a homozygous missense mutation in the IFT122 (WDR10) gene that cosegregated with the disease. Examination of IFT122 in our patient cohort revealed one additional homozygous missense change in the patient from a second consanguineous family. In addition, we found compound heterozygosity for a donor splice-site change and a missense change in one sporadic patient. All mutations were absent in 340 control chromosomes. Because IFT122 plays an important role in the assembly and maintenance of eukaryotic cilia, we investigated patient fibroblasts and found significantly reduced frequency and length of primary cilia as compared to controls. Furthermore, we transiently knocked down ift122 in zebrafish embryos and observed the typical phenotype found in other models of ciliopathies. Because not all of our patients harbored mutations in IFT122, CED seems to be genetically heterogeneous. Still, by identifying CED as a ciliary disorder, our study suggests that the causative mutations in the unresolved cases most likely affect primary cilia function too

    Modulation of Toll-like receptor ligands and Candida albicans-induced cytokine responses by specific probiotics.

    No full text
    Item does not contain fulltextProbiotics have been proposed as modulators of gut inflammation, especially in inflammatory bowel disease (IBD). In order to be able to use them in these clinical conditions, their capacity to modulate immune responses towards other stimuli or microorganisms has to be thoroughly understood. In the present study, three different potentially probiotic strains, Bifidobacterium breve (NumRes 204), Lactobacillus rhamnosus (NumRes1) and Lactobacillus casei (DN-114 001), have been studied for their potential to modulate responses to stimulation with pure pattern-recognition receptor (PRR) ligands or to the gut commensal fungus Candida albicans. Cytokine production induced by PRR ligands or C. albicans was assessed in conditions of simultaneous stimulation or preincubation of primary immune cells with Bifidobacterium or Lactobacillus spp. Results indicate that simultaneous stimulation leads to potentiation of IL-1beta and IL-6 production, while the TNFalpha and IFN-gamma production was inhibited. In settings of pre-incubation with these potentially probiotic strains, lower production of TNFalpha was observed in the presence of B. breve. Moreover, C. albicans-induced IL-17 production was decreased after pre-incubation with both Bifidobacterium or Lactobacillus probiotic strains. Whereas C. albicans induced cytokines are dampened by the tested probiotic strains, TNFalpha and IL-6 production by pure pattern-recognition receptor ligands are potentiated. Interestingly, an important role of Toll-like receptor 9 signalling that involves JNK kinase in the modulatory effects of these probiotic strains has been identified. In conclusion, specific probiotic strains exhibit cross-tolerance effects towards other inflammatory stimuli, especially C. albicans, which might have beneficial effects on gut inflammation.1 juli 201
    corecore