631 research outputs found

    Development and Validation of the Colorado Learning Attitudes about Science Survey for Experimental Physics

    Full text link
    As part of a comprehensive effort to transform our undergraduate physics laboratories and evaluate the impacts of these efforts, we have developed the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). The E-CLASS assesses the changes in students' attitudes about a variety of scientific laboratory practices before and after a lab course and compares attitudes with perceptions of the course grading requirements and laboratory practices. The E-CLASS is designed to give researchers insight into students' attitudes and also to provide actionable evidence to instructors looking for feedback on their courses. We present the development, validation, and preliminary results from the initial implementation of the survey in three undergraduate physics lab courses.Comment: 8 pages, 4 figures, 1 table, submitted to 2012 PERC Proceeding

    Development and results from a survey on students views of experiments in lab classes and research

    Full text link
    The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was developed as a broadly applicable assessment tool for undergraduate physics lab courses. At the beginning and end of the semester, the E-CLASS assesses students views about their strategies, habits of mind, and attitudes when doing experiments in lab classes. Students also reflect on how those same strategies, habits-of-mind, and attitudes are practiced by professional researchers. Finally, at the end of the semester, students reflect on how their own course valued those practices in terms of earning a good grade. In response to frequent calls to transform laboratory curricula to more closely align it with the skills and abilities needed for professional research, the E-CLASS is a tool to assess students' perceptions of the gap between classroom laboratory instruction and professional research. The E-CLASS has been validated and administered in all levels of undergraduate physics classes. To aid in its use as a formative assessment tool, E-CLASS provides all participating instructors with a detailed feedback report. Example figures and analysis from the report are presented to demonstrate the capabilities of the E-CLASS. The E-CLASS is actively administered through an online interface and all interested instructors are invited to administer the E-CLASS their own classes and will be provided with a summary of results at the end of the semester

    An epistemology and expectations survey about experimental physics: Development and initial results

    Full text link
    In response to national calls to better align physics laboratory courses with the way physicists engage in research, we have developed an epistemology and expectations survey to assess how students perceive the nature of physics experiments in the contexts of laboratory courses and the professional research laboratory. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) evaluates students' epistemology at the beginning and end of a semester. Students respond to paired questions about how they personally perceive doing experiments in laboratory courses and how they perceive an experimental physicist might respond regarding their research. Also, at the end of the semester, the E-CLASS assesses a third dimension of laboratory instruction, students' reflections on their course's expectations for earning a good grade. By basing survey statements on widely embraced learning goals and common critiques of teaching labs, the E-CLASS serves as an assessment tool for lab courses across the undergraduate curriculum and as a tool for physics education research. We present the development, evidence of validation, and initial formative assessment results from a sample that includes 45 classes at 20 institutions. We also discuss feedback from instructors and reflect on the challenges of large-scale online administration and distribution of results.Comment: 31 pages, 9 figures, 3 tables, submitted to Phys. Rev. - PE

    Electron heating at interplanetary shocks

    Get PDF
    Data for 41 forward interplanetary shocks show that the ratio of downstream to upstream electron temperatures. T sub e (d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T sub e (d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T sub p (d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the Earth's bow shock. Individual samples of T sub e (d/u) and T sub p (d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons more efficiently than they heat the electrons

    Interaction of the plasma tail of comet Bradfield 1979L on 1980 February 6 with a possibly flare-generated solar-wind disturbance

    Get PDF
    Solar wind plasma data from the ISEE-3 and Helios 2 spacecraft were examined to explain a uniquely rapid 10 deg turning of the plasma tail of comet Bradfield 1979L on 1980 February 6. It was suggested that the tail position angle change occurred in response to a solar wind velocity shear across which the polar component changed by approx. 50 km s-1. The present activity was caused by noncorotating, disturbed plasma flows probably associated with an Importance 1B solar flare

    Plasma properties of driver gas following interplanetary shocks observed by ISEE-3

    Get PDF
    Plasma fluid parameters calculated from solar wind and magnetic field data obtained on ISEE 3 were studied. The characteristic properties of driver gas following interplanetary shocks was determined. Of 54 shocks observed from August 1978 to February 1980, nine contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature across a tangential discontinuity. While helium enhancements were present in all of nine of these events, only about half of them contained simultaneous changes in the two quantities. Often the He/H ratio changed over a period of minutes. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance and by an increase in the ratio of parallel to perpendicular temperature. The drive gas usually displayed a bidirectional flow of suprathermal solar wind electrons at higher energies

    Solar wind-magnetosphere coupling and the distant magnetotail: ISEE-3 observations

    Get PDF
    ISEE-3 Geotail observations are used to investigate the relationship between the interplanetary magnetic field, substorm activity, and the distant magnetotail. Magnetic field and plasma observations are used to present evidence for the existence of a quasi-permanent, curved reconnection neutral line in the distant tail. The distance to the neutral line varies from absolute value of X = 120 to 140 R/sub e near the center of the tail to beyond absolute value of X = 200 R/sub e at the flanks. Downstream of the neutral line the plasma sheet magnetic field is shown to be negative and directly proportional to negative B/sub z in the solar wind as observed by IMP-8. V/sub x in the distant plasma sheet is also found to be proportional to IMF B/sub z with southward IMF producing the highest anti-solar flow velocities. A global dayside reconnection efficiency of 20 +- 5% is derived from the ISEE-3/IMP-8 magnetic field comparisons. Substorm activity, as measured by the AL index, produces enhanced negative B/sub z and tailward V/sub x in the distant plasma sheet in agreement with the basic predictions of the reconnection-based models of substorms. The rate of magnetic flux transfer out of the tail as a function of AL is found to be consistent with previous near-Earth studies. Similarly, the mass and energy fluxes carried by plasma sheet flow down the tail are consistent with theoretical mass and energy budgets for an open magnetosphere. In summary, the ISEE-3 Geotail observations appear to provide good support for reconnection models of solar wind-magnetosphere coupling and substorm energy rates

    Energetic-ion acceleration and transport in the upstream region of Jupiter: Voyager 1 and 2

    Get PDF
    Long-lived upstream energetic ion events at Jupiter appear to be very similar in nearly all respects to upstream ion events at Earth. A notable difference between the two planetary systems is the enhanced heavy ion compositional signature reported for the Jovian events. This compositional feature has suggested that ions escaping from the Jovian magnetosphere play an important role in forming upstream ion populations at Jupiter. In contrast, models of energetic upstream ions at Earth emphasize in situ acceleration of reflected solar wind ions within the upstream region itself. Using Voyager 1 and 2 energetic ( approximately 30 keV) ion measurements near the magnetopause, in the magnetosheath, and immediately upstream of the bow shock, the compositional patterns are examined together with typical energy spectra in each of these regions. A model involving upstream Fermi acceleration early in events and emphasizing energetic particle escape in the prenoon part of the Jovian magnetosphere late in events is presented to explain many of the features in the upstream region of Jupiter
    • …
    corecore