15 research outputs found

    An everlasting pioneer: the story of Antirrhinum research

    Get PDF
    Despite the tremendous success of Arabidopsis thaliana, no single model can represent the vast range of form that is seen in the ~250,000 existing species of flowering plants (angiosperms). Here, we consider the history and future of an alternative angiosperm model — the snapdragon Antirrhinum majus. We ask what made Antirrhinum attractive to the earliest students of variation and inheritance, and how its use led to landmark advances in plant genetics and to our present understanding of plant development. Finally, we show how the wide diversity of Antirrhinum species, combined with classical and molecular genetics — the two traditional strengths of Antirrhinum — provide an opportunity for developmental, evolutionary and ecological approaches. These factors make A. majus an ideal comparative angiosperm

    „Clean and well-fed“

    No full text

    Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM)

    No full text
    Previous attempts to combine expansion microscopy (ExM) and single molecule localisation microscopy (SMLM) have proved challenging. Here the authors show that post-labelling Ex-SMLM improves labelling efficiency, reduces linkage error, and preserves ultrastructural details

    Imaging cellular ultrastructures using expansion microscopy (U-ExM)

    No full text
    Determining the structure and composition of macromolecular assemblies is a major challenge in biology. Here we describe ultrastructure expansion microscopy (U-ExM), an extension of expansion microscopy that allows the visualization of preserved ultrastructures by optical microscopy. This method allows for near-native expansion of diverse structures in vitro and in cells; when combined with super-resolution microscopy, it unveiled details of ultrastructural organization, such as centriolar chirality, that could otherwise be observed only by electron microscopy
    corecore