5 research outputs found

    Data Management Strategy to Improve Global Use of Ocean Acidification Data and Information

    Get PDF
    International audienceOcean acidification (OA) refers to the general decrease in pH of the global ocean as a result of absorbing anthropogenic CO2 emitted in the atmosphere since preindustrial times (Sabine et al., 2004). There is, however, considerable variability in ocean acidification, and many careful measurements need to be made and compared in order to obtain scientifically valid information for the assessment of patterns, trends, and impacts over a range of spatial and temporal scales, and to understand the processes involved. A single country or institution cannot undertake measurements of worldwide coastal and open ocean OA changes; therefore, international cooperation is needed to achieve that goal. The OA data that have been, and are being, collected represent a significant public investment. To this end, it is critically important that researchers (and others) around the world are easily able to find and use reliable OA information that range from observing data (from time-series moorings, process studies, and research cruises), to biological response experiments (e.g., mesocosm), data products, and model output. [...

    MOESM2 of Electrical conductivity of the global ocean

    No full text
    Additional file 2. Supplement document comparing results here with results from a previous study

    MOESM1 of Electrical conductivity of the global ocean

    No full text
    Additional file 1: Figure S1. Depth-averaged conductivity anomaly (relative to annual mean) for each of the four seasons. The full range in the data are, respectively, −0.660–−0.556 (S/m), −0.471–−0.317 (S/m), −0.511–−0.721 (S/m), −0.502–−0.594 (S/m)

    MOESM3 of Electrical conductivity of the global ocean

    No full text
    Additional file 3. Movie of ocean conductivity showing frames moving from surface to sea floor

    Effects of the Pandemic on Observing the Global Ocean

    No full text
    The years since 2000 have been a golden age in in situ ocean observing with the proliferation and organization of autonomous platforms such as surface drogued buoys and subsurface Argo profiling floats augmenting ship-based observations. Global time series of mean sea surface temperature and ocean heat content are routinely calculated based on data from these platforms, enhancing our understanding of the ocean’s role in Earth’s climate system. Individual measurements of meteorological, sea surface, and subsurface variables directly improve our understanding of the Earth system, weather forecasting, and climate projections. They also provide the data necessary for validating and calibrating satellite observations. Maintaining this ocean observing system has been a technological, logistical, and funding challenge. The global COVID-19 pandemic, which took hold in 2020, added strain to the maintenance of the observing system. A survey of the contributing components of the observing system illustrates the impacts of the pandemic from January 2020 through December 2021. The pandemic did not reduce the short-term geographic coverage (days to months) capabilities mainly due to the continuation of autonomous platform observations. In contrast, the pandemic caused critical loss to longer-term (years to decades) observations, greatly impairing the monitoring of such crucial variables as ocean carbon and the state of the deep ocean. So, while the observing system has held under the stress of the pandemic, work must be done to restore the interrupted replenishment of the autonomous components and plan for more resilient methods to support components of the system that rely on cruise-based measurements
    corecore