3 research outputs found

    Forest Resources Assessment Working Paper 165 CASE STUDIES ON MEASURING AND ASSESSING FOREST DEGRADATION MEASURING ECOLOGICAL IMPACTS FROM LOGGING IN NATURAL FORESTS OF THE EASTERN AMAZÔNIA AS A TOOL TO ASSESS FOREST

    No full text
    December, 2009Sustainably managed forests have multiple environmental and socio-economic functions which are important at the global, national and local scales, and they play a vital part in sustainable development. Reliable and up-to-date information on the state of forest resources- not only on area and area change, but also on such variables as growing stock, wood and non-wood products, carbon, protected areas, use of forests for recreation and other services, biological diversity and forests ’ contribution to national economies- is crucial to support decision-making for policies and programmes in forestry and sustainable development at all levels. Under the umbrella of the Global Forest Resources Assessment 2010 (FRA 2010) and together with members of the Collaborative Partnership on Forests (CPF) and other partners, FAO has initiated a special study to identify the elements of forest degradation and the best practices for assessing them. The objectives of the initiative are to help strengthen the capacity of countries to assess, monitor and report on forest degradation by: � Identifying specific elements and indicators of forest degradation and degraded forests; � Classifying elements and harmonizing definitions; � Identifying and describing existing and promising assessment methodologies

    Estimating Canopy Structure in an Amazon Forest from Laser Range Finder and IKONOS Satellite Observations

    No full text
    Canopy structural data can be used for biomass estimation and studies of carbon cycling, disturbance, energy balance, and hydrological processes in tropical forest ecosystems. Scarce information on canopy dimensions reflects the difficulties associated with measuring crown height, width, depth, and area in tall, humid tropical forests. New field and spaceborne observations provide an opportunity to acquire these measurements, but the accuracy and reliability of the methods are unknown. We used a handheld laser range finder to estimate tree crown height, diameter, and depth in a lowland tropical forest in the eastern Amazon, Brazil, for a sampling of 300 trees stratified by diameter at breast height (DBH). We found significant relationships between DBH and both tree height and crown diameter derived from the laser measurements. We also quantified changes in crown shape between tree height classes, finding a significant but weak positive trend between crown depth and width. We then compared the field‐based measurements of crown diameter and area to estimates derived manually from panchromatic 0.8 m spatial resolution IKONOS satellite imagery. Median crown diameter derived from satellite observations was 78 percent greater than that derived from field‐based laser measurements. The statistical distribution of crown diameters from IKONOS was biased toward larger trees, probably due to merging of smaller tree crowns, underestimation of understory trees, and overestimation of individual crown dimensions. The median crown area derived from IKONOS was 65 percent higher than the value modeled from field‐based measurements. We conclude that manual interpretation of IKONOS satellite data did not accurately estimate distributions of tree crown dimensions in a tall tropical forest of eastern Amazonia. Other methods will be needed to more accurately estimate crown dimensions from high spatial resolution satellite imagery
    corecore