3,781 research outputs found

    The Origin of OB Runaway Stars

    Full text link
    About 20% of all massive stars in the Milky Way have unusually high velocities, the origin of which has puzzled astronomers for half a century. We argue that these velocities originate from strong gravitational interactions between single stars and binaries in the centers of star clusters. The ejecting binary forms naturally during the collapse of a young (\aplt 1\,Myr) star cluster. This model replicates the key characteristics of OB runaways in our galaxy and it explains the \apgt 100\,\Msun\, runaway stars around young star clusters, e.g. R136 and Westerlund~2. The high proportion and the distributions in mass and velocity of runaways in the Milky Way is reproduced if the majority of massive stars are born in dense and relatively low-mass (5000-10000 \Msun) clusters.Comment: to appear in Scienc

    The lost siblings of the Sun

    Full text link
    The anomalous chemical abundances and the structure of the Edgewood-Kuiper belt observed in the solar system constrain the initial mass and radius of the star cluster in which the sun was born to M≃500M\simeq500 to 3000 \msun and R≃1R\simeq 1 to 3 pc. When the cluster dissolved the siblings of the sun dispersed through the galaxy, but they remained on a similar orbit around the Galactic center. Today these stars hide among the field stars, but 10 to 60 of them are still present within a distance of ∼100\sim 100 pc. These siblings of the sun can be identified by accurate measurements of their chemical abundances, positions and their velocities. Finding even a few will strongly constrain the parameters of the parental star cluster and the location in the Galaxy where we were born.Comment: Submitted to ApJ Letter

    Black hole mergers in the universe

    Get PDF
    Mergers of black-hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates too low to be of observational interest. In this paper we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation then causes them to sink to the cluster core, where they form binaries. These black-hole binaries become more tightly bound by superelastic encounters with other cluster members, and are ultimately ejected from the cluster. The majority of escaping black-hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational radiation causes them to coalesce within a few billion years. We predict a black-hole merger rate of about 1.6×10−71.6 \times 10^{-7} per year per cubic megaparsec, implying gravity wave detection rates substantially greater than the corresponding rates from neutron star mergers. For the first generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we expect about one detection during the first two years of operation. For its successor LIGO-II, the rate rises to roughly one detection per day. The uncertainties in these numbers are large. Event rates may drop by about an order of magnitude if the most massive clusters eject their black hole binaries early in their evolution.Comment: 12 pages, ApJL in pres

    Reconstructing the Arches I: Constraining the Initial Conditions

    Full text link
    We have performed a series of N-body simulations to model the Arches cluster. Our aim is to find the best fitting model for the Arches cluster by comparing our simulations with observational data and to constrain the parameters for the initial conditions of the cluster. By neglecting the Galactic potential and stellar evolution, we are able to efficiently search through a large parameter space to determine e.g. the IMF, size, and mass of the cluster. We find, that the cluster's observed present-day mass function can be well explained with an initial Salpeter IMF. The lower mass-limit of the IMF cannot be well constrained from our models. In our best models, the total mass and the virial radius of the cluster are initially (5.1 +/- 0.8) 10^4 Msun and 0.76 +/- 0.12 pc, respectively. The concentration parameter of the initial King model is w0 = 3-5.Comment: 12 pages, 14 Figures, revised and accepted for publication in MNRA

    Climate control of a bulk storage room for foodstuffs

    Get PDF
    A storage room contains a bulk of potatoes that produce heat due to respiration. A ventilator blows cooled air around to keep the potatoes cool and prevent spoilage. The aim is to design a control law such that the product temperature is kept at a constant, desired level. This physical system is modelled by a set of nonlinear coupled partial differential equations (pde's) with nonlinear input. Due to their complex form, standard control design will not be adequate. A novel modelling procedure is proposed. The input is considered to attain only discrete values. Analysis of the transfer functions of the system in the frequency domain leads to a simplification of the model into a set of static ordinary differential equations ode's). The desired control law is now the optimal time to switch between the discrete input values on an intermediate time interval. The switching time can be written as a symbolic expression of all physical parameters of the system. Finally, a dynamic controller can be designed that regulates the air temperature on a large time interval, by means of adjustment of the switching time

    Catching a planet: A tidal capture origin for the exomoon candidate Kepler 1625b I

    Get PDF
    The (yet-to-be confirmed) discovery of a Neptune-sized moon around the ~3.2 Jupiter-mass planet in Kepler 1625 puts interesting constraints on the formation of the system. In particular, the relatively wide orbit of the moon around the planet, at ~40 planetary radii, is hard to reconcile with planet formation theories. We demonstrate that the observed characteristics of the system can be explained from the tidal capture of a secondary planet in the young system. After a quick phase of tidal circularization, the lunar orbit, initially much tighter than 40 planetary radii, subsequently gradually widened due to tidal synchronization of the spin of the planet with the orbit, resulting in a synchronous planet-moon system. Interestingly, in our scenario the captured object was originally a Neptune-like planet, turned into a moon by its capture.Comment: Accepted for publication in ApJL. 7 pages, 5 figure
    • …
    corecore