249 research outputs found

    On the penetration of nucleons through heavy nuclei

    Get PDF
    The rate of loss of energy of a nucleon traversing a nucleus and the mechanism of star production are investigated on the basis of the meson type of interaction e-kr/xr. The theoretical predictions are compared with the available empirical data

    Quality assurance in transnational higher education : a case study of the tropEd network

    Get PDF
    Transnational or cross-border higher education has rapidly expanded since the 1980s. Together with that expansion issues on quality assurance came to the forefront. This article aims to identify key issues regarding quality assurance of transnational higher education and discusses the quality assurance of the tropEd Network for International Health in Higher Education in relation to these key issues.; Literature review and review of documents.; From the literature the following key issues regarding transnational quality assurance were identified and explored: comparability of quality assurance frameworks, true collaboration versus erosion of national education sovereignty, accreditation agencies and transparency. The tropEd network developed a transnational quality assurance framework for the network. The network accredits modules through a rigorous process which has been accepted by major stakeholders. This process was a participatory learning process and at the same time the process worked positive for the relations between the institutions.; The development of the quality assurance framework and the process provides a potential example for others

    Spontaneous Charging and Crystallization of Water Droplets in Oil

    Full text link
    We study the spontaneous charging and the crystallization of spherical micron-sized water-droplets dispersed in oil by numerically solving, within a Poisson-Boltzmann theory in the geometry of a spherical cell, for the density profiles of the cations and anions in the system. We take into account screening, ionic Born self-energy differences between oil and water, and partitioning of ions over the two media. We find that the surface charge density of the droplet as induced by the ion partitioning is significantly affected by the droplet curvature and by the finite density of the droplets. We also find that the salt concentration and the dielectric constant regime in which crystallization of the water droplets is predicted is enhanced substantially compared to results based on the planar oil-water interface, thereby improving quantitative agreement with recent experiments.Comment: 10 pages, 7 figures, submitted for publicatio

    Ion association in low-polarity solvents: comparisons between theory, simulation, and experiment

    Get PDF
    The association of ions in electrolyte solutions at very low concentration and low temperature is studied using computer simulations and quasi-chemical ion-pairing theory. The specific case of the restricted primitive model (charged hard spheres) is considered. Specialised simulation techniques are employed that lead to efficient sampling of the arrangements and distributions of clusters and free ions, even at conditions corresponding to nanomolar solutions of simple salts in solvents with dielectric constants in the range 5-10, as used in recent experimental work on charged-colloid sus- pensions. A direct comparison is effected between theory and simulation using a variety of clustering criteria and theoretical approximations. It is shown that conventional distance-based cluster criteria can give erroneous results. A reliable set of theoretical and simulation estimators for the degree of association is proposed. The ion-pairing theory is then compared to experimental results for salt solutions in low-polarity solvents. The agreement is excellent, and on this basis some calculations are made for the screening lengths which will figure in the treatment of colloid-colloid interactions in such solutions. The accord with available experimental results is complete

    Liquid-liquid interfacial tension of electrolyte solutions

    Full text link
    It is theoretically shown that the excess liquid-liquid interfacial tension between two electrolyte solutions as a function of the ionic strength I behaves asymptotically as O(- I^0.5) for small I and as O(+- I) for large I. The former regime is dominated by the electrostatic potential due to an unequal partitioning of ions between the two liquids whereas the latter regime is related to a finite interfacial thickness. The crossover between the two asymptotic regimes depends sensitively on material parameters suggesting that, depending on the actual system under investigation, the experimentally accessible range of ionic strengths can correspond to either the small or the large ionic strength regime. In the limiting case of a liquid-gas surface where ion partitioning is absent, the image chage interaction can dominate the surface tension for small ionic strength I such that an Onsager-Samaras limiting law O(- I ln(I)) is expected. The proposed picture is consistent with more elaborate models and published measurements.Comment: Accepted for publication in Physical Review Letter

    Stability of additive-free water-in-oil emulsions

    Full text link
    We calculate ion distributions near a planar oil-water interface within non-linear Poisson-Boltzmann theory, taking into account the Born self-energy of the ions in the two media. For unequal self-energies of cations and anions, a spontaneous charge separation is found such that the water and oil phase become oppositely charged, in slabs with a typical thickness of the Debye screening length in the two media. From the analytical solutions, the corresponding interfacial charge density and the contribution to the interfacial tension is derived, together with an estimate for the Yukawa-potential between two spherical water droplets in oil. The parameter regime is explored where the plasma coupling parameter exceeds the crystallization threshold, i.e. where the droplets are expected to form crystalline structures due to a strong Yukawa repulsion, as recently observed experimentally. Extensions of the theory that we discuss briefly include numerical calculations on spherical water droplets in oil, and analytical calculations of the linear PB-equation for a finite oil-water interfacial width.Comment: 9 pages, 4 figures, accepted by JPCM for proceedings of LMC

    Optimality in superselective surface binding by multivalent DNA nanostars

    Full text link
    Weak multivalent interactions govern a large variety of biological processes like cell-cell adhesion and virus-host interactions. These systems distinguish sharply between surfaces based on receptor density, known as superselectivity. Earlier experimental and theoretical work provided insights into the control of selectivity: Weak interactions and a high number of ligands facilitate superselectivity. Present experimental studies typically involve tens or hundreds of interactions, resulting in a high entropic contribution leading to high selectivities. However, if, and if so how, systems with few ligands, such as multi-domain proteins and virus binding to a membrane, show superselective behavior is an open question. Here, we address this question with a multivalent experimental model system based on star shaped branched DNA nanostructures (DNA nanostars) with each branch featuring a single stranded overhang that binds to complementary receptors on a target surface. Each DNA nanostar possesses a fluorophore, to directly visualize DNA nanostar surface adsorption by total internal reflection fluorescence microscopy (TIRFM). We observe that DNA nanostars can bind superselectively to surfaces and bind optimally at a valency of three. We quantitatively explain this optimum by extending the current theory with interactions between DNA nanostar binding sites (ligands). Our results add to the understanding of multivalent interactions, by identifying microscopic mechanisms that lead to optimal selectivity, and providing quantitative values for the relevant parameters. These findings inspire additional design rules which improve future work on selective targeting in directed drug delivery.Comment: 14 pages, 4 figure
    corecore