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Summary 
The  r a t e  of loss of ene rgy  of a nuc leon  t r a v e r s i n g  a nuc leus  a n d  the  me-  

c h a n i s m  of s t a r  p r o d u c t i o n  are  i n v e s t i g a t e d  on the  basis  of t he  meson  t y p e  
of i n t e r ac t i on  e-K'/xr. The  theo re t i ca l  p red ic t ions  are  c o m p a r e d  wi th  t h e  
ava i lab le  empi r ica l  da ta .  

I. Introduction. The microscopic examination of specially pre- 
pared photographic emulsions, which have been exposed to cosmic 
radiation, is an important means of studying nuclear disintegration 
processes. These processes manifest themselves in the emulsion as 
disintegration-stars, which arise from the disintegration of a nu- 
cleus into many particles by  a collision with a cosmic particle, which 
we shall assume to be a neutron. Of course, only charged particles 
are recorded. From the length of path in the emulsion, the variation 
of grain density and the Coulomb scattering, it is possible to draw 
important conclusions about the nature and energy of the knocked- 
out particles. These energies may exceed 100 MeV. 

It appears that protons are most frequent. So one has to assume 
that on the average an equal number of neutrons must be expelled. 
One arrives therefore at the conclusion that the energy, transmitted 
from the impinging particle to the nucleus, is at least twice the sum 
of the proton energies, i.e. of the order of a few hundreds of MeV. 
Larger energies are, however, also frequent. 

For the Gauss potential, H e i s e n b e r g  (1937) and B a g g e  
(1939) have given computations of the energy distribution of the 
knocked-out nucleons and the maximum energy loss of the imping- 
ing neutron. From the energy distribution one may draw conclu- 
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sions about the magnitude of the range g-' of the nuclear potential. 
The strength of the potential does not appear in the equation for 
the relative energy distribution. Ortner (1940) compared the com- 
puted values with the experimental data and found a good agree- 
ment. I t  is therefore desirable to perform the calculations also for 
the meson potential. 

There are, however, some differences with the corresponding cal- 
culations for the Gauss potential. First the less rapid falling off of 
the meson potential leads to a considerable number of high energy 
particles. Although the experimental results of O r t n e r (1940) 
are in good agreement with the calculations using the Gauss poten- 
tial, the more recent data of P e r k i n s (1947) indicate that  the 
number of high energy particles is too high to be explained by a 
Gauss potential. Taking into account, however, the unrecorded 
protons, the agreement of the figures for the meson potential with 
the most reliable experimental data is very satisfactory indeed, if 
~-J = 2 x I0 -t3cm. 

When computing the energy loss per unit path in nuclear matter,  
it is necessary to use the relativistic expression for the kinetic 
energy, because otherwise this expression will contain a divergent 
integral. Then the upper limit for the mean energy loss per collision 
is 31 MeV. 

Before the computation some remarks are given about the col- 
lision cross section. These remarks refer to the way in which the 
Pauli principle is taken in account. It appears that the formulae 
must be altered slightly. For the results of H e i s e n b e r g and 
B a g g e these alterations are only of little importance. 

II. The collision cross section. In this section we shall discuss the 
collision cross section only so far as is necessary to bring about the 
changes to be made in the theory of H e i s e n b e r g .  For the 
derivation of the formulae we refer to the book of R o s e n f e i d 
whose notations we shall also use. All calculations are made with 
the help of the meson potential e-~'/~r, without using meson field 
theory, and neglecting the electrostatic interaction of the nucleons. 
We shall assume that  we may represent the heavy nucleus by a 
Fermi gas of the composing nucleons. For the collision cross section 
we take the formula derived with the Born approximation. Then the 
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equation for the differential collision cross section of a neutron with 
one of the particles of the nucleus, reads 

dS = (c/vl))) (2~V/h) ! (il U,.,a!] ) 12 dn/, (1) 

• m the velocity of the impinging neutron. The indices (1) and with u~ 
(2) refer to the impinging and knocked-on particles respectively 
and the indices (i) and ([) refer to the initial and final states; V is 
the volume of the nucleus, ( f lU , ,  all) the matrix element of the 
nuclear potential  and dn, the number  of s tat ionary states of the 
system per unit  energy after collision. I t  is necessary to take into 
account the identi ty of impinging and knocked particles with respect 
to the Pauli principle. After averaging over spin and charge varia- 
bles, we have: 

i( i]U,, , ,al /)12=0.52J¢ 4n2 [( 2 )2 ( 2 )21 
V2 c2gb l+(p/h;~)2 + ,l+(/~ih;~)~ ; (2) 

J is the strength of the meson potential with range ~-1 and p, p'  are 
the magnitudes of the momentum transfers in the collision: 

p = pit) _ _  p}t), (3a) 
p, = pl.,) _ _  p~2) = p~t) _ _  p~2) _ _  p. (3b) 

For energy and m o m e n t u m  we have the conservation laws 
p~l) + p~2) = pl,) + p~2,, (4) 

c V(M=:  + 14 "2) + c v'(U2c ~ + p?'~) 
= c~/(M~c ~ + ~')~) + cv ' (m~:  + p~'~) (5) 

or  

e~" + E?, = E~', + E~ 2' 

The second term in (2) is caused by the Pauli principle. After the 
collision it is impossible to decide which of the particles is the im- 
pinging one. So we have two terms, the first indicating that  the 
particle with lower energy is particle (2), the second tha t  it is par- 
ticle (1). In the first case the momen tum exchange is small, in the 
second large. In the lat ter  case the impinging neutron communicates 
most of its energy to the knocked-on particle. So we may  use our 
formula only up to half the largest possible energy transfer. Then 
the energies of both particles are equal after the collision, the cor- 
responding momentum being Pv  From (4) and (5) follows 

El" + ~?)= 2~V(M~: + p~). 
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The second term in (2) is the term for large energy exchange. We 
shall call it the exchange term. 

These differences in the momen tum exchange will also appear  in 
the expression for dn I. We introduce polar coordinates  in momen- 
tum space with p~n as polar axis and counting the azimuths from 
the plane (pl n, p~2)). The coordinates  of p are p, 0 and 9 with 

= cos 0. For the following we put  pl 2) ---- 0. Then 

p~,)2 = p~1)2 + p2 __ 2ppl.,) ¢. 

For a given m o m e n t u m  exchange p, dn t is *) 

V c ( %/(M2c2+p2)--iVc) 
dn I - -  (2~h)3 p dp d~0 ~f i  l - -  v,(M2c 2 + pl,)2) . 

Of course, this formula is also valid for large m o m e n t u m  exchange. 
The exchange term, however,  is a function of p '  = pl 1 ) -  p, and 
for the integrations it is desirable to have dn t as a function of p' .  
Denot ing the coordinates  of p '  by  p', 0' and 9' with ¢' = cos O', 
we find 

v ( V(M2c2 + 
dn I = - 4/d4~' l - -  

(2nh) 3~ ~ dg'  V~  V ( M 2 c  2 + pl ')2) ]" 

The form of this equat ion is the same as tha t  in p. Then the cross 
section is : 

c2 ( 2 ) 2 ( 1 - -  A/(M2c2+P2)--Mc) P dpdq~ 
d ~ =  B ; ~ , i ¥  (p/t,~)~ V(M2c ~ + p~')2) 

+ (similar term in p' and 9'), 
where 

2 
B = 0 . 5 2 - - -  

C2~2;~4  " 

The first te rm must  be integrated over  p f rom 0 up to Pv  the second 
over  p'  from p~ to pl u (cf. equ. (2)). 

In t roducing 

13=Uclt~, a=pl.t'lh>c, u=plh~, u'=p'lh~., u~=pdh~, r= ~/(a2+t ~) 
we have : 

d ~ = B  72 4 7 + fl - -  ~ (  u2 + f12) 
u d u d  9 w i t h u  < u i 72 ~2 (l  .Jr_ /,~2)2 7 

-t- (s imi lar  t e rm  in ,u' and qg') w i t h  u '  > u t. 

• ) cf. Rose n f e ] d  loc. cit. 
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We can combine these two terms, if there is no function of p to 
be integrated.  So we have for the tota l  cross section 

I ; = ( 1  

For some calculations it is desirable to take the energy, expressed 
in units ~ = ~ / ( f 1 2  1), as the independent  variable. Pu t t ing  

: I/l + 

we find 
y 2 I 4 y + f l - - ~ v  

. . . . . . . .  v dv d~. d~ By2__fl2 62 (v 2 _ I ) 2  y 

The lirmts are fl/~, (fl + y)/2~ = v~_ and  (fl + y)/2~ = v~, y/6.  
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Fig.  1. The  m e a n  t o t a l  coll ision c ross - sec t ion  for  a g iven  k iue t ic  e n e r g y  
of one  of t h e  par t ic les ,  t he  o t h e r  be ing  a t  rest .  

Figure l shows ~ as a function of the kinetic energy of the  im- 
pinging neutron.  The limiting value of ~ for large energy is 

4.15 x 10 -2e cm 2 if z -I ~-~ 2 x 10 -13 cm. 
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We have also computed the relative probability of a collision with 
Et 

a given energy transfer, i.e. the ratio of f d~ to ~. In the table we 
E2 

give the probability in per cents of the total cross section for a col- 
lision with an energy transfer between some important limits. 

TABLE l 

The probability of an energy 
transfer in a given interval for a 
collision of two nucleons in p~r 
cents of the total cross-section 

Probability 
Interval 

in % 

46-92 MeV 5.7 
92-138 ,, 1.9 

138-184 ,, 0.95 
>184 ,, 2.59 

These probabilities are practically independent of the energy 
of the impinging nucleon, provided that this energy is higher than 
400 MeV. 

III.  The energy distribution o/ the knocked-out particles. Instead 
of directly comparing the computed energy distribution with the 
experimental data, it is better  to compare the ratios of the number 
of nucleons with an energy larger than a given energy E (E is the 
non relativistic kinetic energy of the knocked nucleon after the col- 

oo 

lision). This number is proportional to ~ ( E ) =  f d~. Using the 

general formulae for ~ (E) given by R o s e n f e I d, we find for the 
meson potential 

H(~x-t) H 4 ] 2 -~(E) ~j [2H2(~]2.q_ l)__x2 ( ~ ] 2 - 1 ) 2  

HI7/+ 11 

with H = p~'/~u and ~] = x/(E/E°,,), E, ° being the nonrelativistic 
maximum kinetic energy of the zero point distribution and pO the 
corresponding momentum. Performing the integration we find with 
the  substi tution 2Ht = l + / . / 2 ( ~ 1 2  1): 

s(E) ,~ (t 2 + I) arc c o t g  t - -  t .  
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This formula is valid only if the contribution of collisions with high 
energy transfer is negligible, for only then we may take oo instead 
of a as upper limit of integration. The energy E inside the nucleus 
corresponds with an energy E o = E - -  (E,°,, + e) outside, e being 
the average binding energy per nucleon. The values used are 
E ,  °, = 24.2 MeV and e = 8.6 MeV. 

It is, however, impossible to measure the number of nucleons 
n(Eo)  with an energy outside the nucleus larger than E o with ac- 
curacy. Very high energies will not be recorded in the photographic 
emulsion, while nucleons of 100-200 MeV easily escape attention. 
So we can only compare the number of particles in certain intervals. 
On the other hand this is also desirable from a theoretical point of 
view, in order to eliminate the contribution of the upper limit of 
integration, for which we took oo. If E I is an energy, which is cer- 
tainly fully recorded in the emulsion, we have to compare ~ (Ec) - -  

~(Es) with n ( E o ) -  n ( E i ) .  Then the choice of the upper limit 
of p is of no importance, except for the contribution of the exchange 
term. If the energy of the impinging particle is very high, we may 
neglect this contribution which is "~(EI II - -  El)  - -  "~(EIJ I - -  Ec). 

The table for ~(E) is computed for three values of n -I, namely 
1.8 × 10 -13 cm, 2.0 × 10 -t3 cm and 2.2 x 10 -13 cm, neglecting the 
exchange contribution. A factor 1.56nJ2/Hv~'12h2~. 4 has been omitt- 
ed in ~(E). From it we calculated the relative numbers of nucleons 
a = {~(Ee) ---s(Et)}/{-s(lO MeV) --~(Ei) } with an energy between E c 
and E z for two values of E I resp. 110 MeV and 60 MeV. We have also 
computed these relative numbers for a Gauss potential, assuming 
n -1 = 2.0 x 10 -13 cm. The experimental ratios are computed from 
measurements by P e r k i n s ( 1 9 4 7 )  and W a m b a c h e r  (1940) 
and refer respectively to 46 and 194 tracks of E o > l0 MeV. 

From table II it is clear that  the three values chosen for n-i 
satisfactorily agree with the figures of W a m b a c h e r. It is, 
however, impossible to make a choice for n -t, different factors being 
responsible for this. First stars with a small number of proton tracks 
were excluded from the statistics. (This is necessary because stars 
with a small number of tracks might originate from light nuclei.) 
A large number of single tracks and of stars, at tr ibuted to light 
nuclei, must originate from a collision with a heavy nucleus. The 
energy of the impinging neutron was supposed to be larger than 
200 MeV. Only in that  case may the exchange contribution be 
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neglected. The latter will give only a slight increase in the computed 
number of particles, especially for the higher energies if the energy 
of the impinging neutron is about 2Ev Further the effect of se- 
condary collisions has been neglected, which collisions would result 
in a increase in the number of low energy particles at the cost of 
those of high energy. Finally it is important to remark that a dif- 
ferent choice of E °, gives about the same percentage change in the 
best value of ;~-J. These small differences make it impossible to make 
a choice of n- t  even with the help of a large number of observations. 

T A B I . E  11 

The  in tegrated  col l i s ion cross -sect ion  5(1:.) in uni ts  1.56 X J " / H t , i ( ' b h " x  ~ aml  tilt' 
r e la t ive  lllllllbel" Of n u c l e o n s  o" w i t h  an e n e r g y  o u t s i d e  tile IItlClel.I$ l )e twcen 1".'. illld A 1. 

Eo 
(MeV) 

10 

20 
30  

40 

50 
60 

70 
90 
110 

1.8 

0.571 
0 .4368 

0 .380  

0 .292  

0 .2495  

0 .216  

0.192 

0.157 
0 .132  

s(E°) 

2.0  

0 .548 

0 .4115  
0 .3275 

0 .270  
0 .229  

0.198 
0 .177 

0 .144 
0 .120  

2.2  

0.523 
0 .387 

0 .303 
0 .2455 

0.211 
0 .184 

0 .163 
O. 132 

0 .1105  

a ( E  l = I I O M e V )  

1.8 : 2 .0  2 .2  

100 100 I00 
69.3 68.1 67.1 

49.6 48.5 46.5 
36.4 35.0  32.7 

26.8 25.E 24.3 
19.1 18.2 17.8 
13.6 13.3 12.7 

5.7 5.6 5.2 

[) ( ;aus5 

100 100 
48 56 .0  
24 32.7  

19.8 17.3 
15 10.3 

8.6 5.3 
6.5 2.1 

4.3 0.9 

a ( E  = 60 MeV) 
Eo 

(MeV) x - t  = I '  W G a u s s  
1,8 2.0 2.2 

I0 100 100 100 I00  I00 100 
20 62.2  61.2  59.9 43 60.8 53.5 
30  37.8 37.1 35. I 16.7 34.6 28.4 

40 21.4 20.8 18.2 I 1.9 24.2  12.7 
50 10.0 8.9 8.0 7.2 8.8 5.2 

P P r k i n s ;  W W a m b a c h e r .  x -~ in 1 0 t 3 c m .  

About the directions of the knocked-out nucleons we can say 
the following: 

If E[ u is very large, the direction of the knocked nucleon will 
lie in a plane perpendicular to the direction of the neutron. If there 
are secondary collisions the tracks in the emulsion may considerably 
deviate from this plane. So we expect the larger energy tracks to lie 
in the perpendicular plane, the slower nucleons having a more 
isotropic distribution. If the neutron energy is about 200 MeV or 
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less, the only thing we may  expect  is, on the average, a slight pre- 
ference for the direction of the incoming neutron.  

IV. Energy loss in nuclear matter. On its wa y  through a nucleus 
a fast nucleon loses kinetic energy owing to collisions. According to 
a theorem b y  W i 1 1 i a m s the mean energy loss per  unit  pa th  is 
the same as though the nucleons inside the nucleus were at rest. 
So we have to integrate p from 0 to p~ and p'  from p~ to  pl tl. 

The functional  form of the energy loss in p is different from tha t  
in p', viz. 

cx/(M%2+ p2)__mc 2 and cx/(M2c2+ pl 1)2) - -  cx/(m2c 2 + p,2). 

After  performing a t ransformat ion to the variables v, a, r ,  ~ and 6 
they  read chx (6v - -  r) and chx (y - -  6v), writ ing v for v'. 

The energy loss per unit  length is dEll~/ds = -  (A/V)fEd-~, 
E being the energy loss and (A/V) the densi ty  of nuclear mat ter .  

2~r (~ + y)/28 

- , 

dEl°ds AV chxB ~ .. (v 2 - -  I)2 (y+fl--6v)  (6v- - r )v  dvd~ 

o ~'8 
2~ "y ~ //. j 

+ . iv 2 - 1 )  2 ( ~ + ~ - ~ v ) ( r - 6 v ) v d v d ~  
0 (B+ ~)/28 

- -  (A/V)chnB (2.try~a26) [(37 + 3fl - -  46) log {k(7 + f l ) 2  62} 

- -  6 ( ~  + r) log {½(~ + fi) + 6}  - -  ( 2 ~  + fl - -  26) log (y2 _ _  62) 

+ (4r + 2/~) log (~ + 6) + (2v + 4/~) log (fl + 6)]. 

For  ~-1 = 2 ×  10 -l° cm we find f l=9.40,  8 = 9 . 3 5  and fl/6 = 1.0057. 

Put t ing  P = y/6 we have dE~l)/ds = -  (A/V)C[(P) 
where C = (2~/6)c~Y.B = 1.04 ~rj2/6ct, x 3 

and 

[(p) = p(p2 ~ 1.0114)-1 [(3P - -  0.9829) log (½P ~ 0.4971) 

- -  (3P + 7.017) log (½ P + 1.503) + (2P + 3.006) log (P + 1) 

- -  (2P - -  0.994) log (P - -  1) + (2P + 4.023) log 2.006 

+ (2P + 0.023) log 9.35]. 
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Graph  2 shows this funct ion /(P) (using the loglo ) and  the 
ene rgy  loss per  collision, as a funct ion of the  kinetic energy  of the  

imping ing  neut ron .  The  t r an s fo rm a t i on  fac tor  to log e and  to MeV 
m a y  be t a k e n  toge the r  wi th  C. Then  C = 50.4 × l0 -2s MeV. 
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t(p) 

I 5 

4 

3 

Energy loss per unit path f(p) 
. . . .  Energy  loss per col l is ion 

. -  

2 

4 6  9 2  

MeV 
30 

20 

t0  

I I I I I I o 
460 920 t840 4600  $2OO tSaC~ MeV. 

1, Energy E 

Fig. 2. The energy loss per unit path in nuclear matter  [(P) in units 
(A/V) × 2.39nj2/6chn 3 and the mean energy loss per collision of a 

nucleon with kinetic energy E. 

F r o m  the g raph  one sees t ha t  the energy  loss of a nucleon with 
kinet ic  energy  larger  t han  400 MeV is prac t ica l ly  cons tan t .  Hence  it 
is p e r m i t t e d  to wri te  for the  to ta l  energy  loss of fast  nucleon run-  
ning t h r o u g h  a nucleus as 

AE = As.  (A /V) /(P) × 50 × 10 -26 MeV 

For  Ag and  Br  (A/V) As ~ I02s. So the  me.an energy  loss of a ve ry  

fas t  nucleon has  the l imit  130 MeV. This  value would seem too low 
to  expla in  the f requent  occurrence of s tars  wi th  an energy  beyond  
300 MeV. 

To  get an idea of the  p robab i l i ty  of large s ta r  energies in the 
above  theo ry  we have  t a k e n  the  following device.  The  mean  num-  
ber  of collisions wi thin  a nucleus of Ag or Br  is ~(A/V) ds  (-~ ~- to ta l  
cross section).  F r o m  figure 1 it follows tha t  ~ ~ 4.5 × 10 -~6 cm 2 
for large energies. F u r t h e r  ( A / V ) A s  ~ 1026cm-2. So there  are 
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about 4.5 primary collisions. For high energy particles the number 
is about 4, which number we shall use. With the help of table I 
we compute the probabilities for two and three collisions with an 
energy exchange in the intervals (1) 46-92 MeV, (2) 92-I 38 MeV and 
(3) 138-184 MeV. Only these intervals are important, for nucleons 
with smaller energy do not contribute much while high energy par- 
ticles will escape without being recorded, t.he probability for se- 
condary collisions with large energy transfer being of the order of 
5%. So we get a table for the probability of two collisions in interval 
(1), (2) or (3); one collision in (1) and one in (2) and so on. Taking 
for each interval a mean value of the energy transfer, we get a 
list of probabilities for collisions with a certain mean energy transfer. 
Adding all probabilities with energy transfer within certain inter- 
vals we find roughly the following probabilities for an energy trans- 
fer to the nucleus: 

150-250 MeV 2% 

250-350 ,, 0.1% 

350-450 ,, 0.01% 

Having no figures at my disposal, I could not make a comparison 
with experimental data. As the probability for collisions with a 
small energy transfer is great and these collisions will not be recorded 
as stars in the emulsion, the absolute value of the above figures is 
not very important. Only the relative values may be compared with 
statistics of star energies. 

If the energy of the impinging nucleon is of order of 300-400 MeV, 
these figures will be higher because after two collisions of about 100 
MeV the remaining energy of the neutron is also of this order. 

Another way to explain the occurrence of high energy stars is 
the hypothesis that  the impinging particle is a meson or an a-par- 
ticle. In the first case the energy will mainly originate from the mass 
energy of the meson. The loss of mass energy in two steps seems 
favourable, this energy being distributed among several nucleons. 
In the second case we can roughly say that  the collision cross sec- 
tion of an a-particle is a few times that  of a nucleon with ¼ of the 
kinetic energy of the a-particle. The mean energy loss is then a few 
times that  of a nucleon, i.e. the total energy, if the energy of the 
a-particle is about 500 MeV. It is, howeyer, impossible that  this 
particle forms a part of the cosmic radiation. We must therefore 
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a s s u m e  that  it originates  in a col l is ion of a cons t i tuent  of  the  cosmic  
radiat ion wi th  the  same or a ne ighbouring nucleus.  These  possi-  
bilities are still  to  be examined .  

I wish to express  m y  thanks  to prof. L. R o s e n f e 1 d for m a n y  
useful  discussions.  

Rece ived  J u n e  24th  1948. 
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