Physica XIV, no 8 December 1948

ON THE PENETRATION OF NUCLEONS
THROUGH HEAVY NUCLEI

by G. C. J. ZWANIKKEN

Instituut voor Theorctische Natuurkunde der Rijks-Universiteit, Utrecht

Summary

The rate of loss of energy of a nucleon traversing a nucleus and the me-
chanism of star production are investigated on the basis of the meson type
of interaction ¢ %"/xr. The theoretical predictions are compared with the
available empirical data.

1. Introduction. The microscopic examination of specially pre-
pared photographic emulsions, which have been exposed to cosmic
radiation, is an important means of studying nuclear disintegration
processes. These processes manifest themselves in the emulsion as
disintegration-stars, which arise from the disintegration of a nu-
cleus into many particles by a collision with a cosmic particle, which
we shall assume to be a neutron. Of course, only charged particles
are recorded. From the length of path in the emulsion, the variation
of grain density and the Coulomb scattering, it is possible to draw
important conclusions about the nature and energy of the knocked-
out particles. These energies may exceed 100 MeV.

It appears that protons are most frequent. So one has to assume
that on the average an equal number of neutrons must be expelled.
One arrives therefore at the conclusion that the energy, transmitted
from the impinging particle to the nucleus, is at least twice the sum
of the proton energies, i.e. of the order of a few hundreds of MeV.
Larger energies are, however, also frequent.

For the Gauss potential, Heisenberg (1937) and Bagge
(1939) have given computations of the energy distribution of the
knocked-out nucleons and the maximum energy loss of the imping-
ing neutron. From the energy distribution one may draw conclu-
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sions about the magnitude of the range »~' of the nuclear potential.
The strength of the potential does not appear in the equation for
the relative energy distribution. Ortner (1940) compared the com-
puted values with the experimental data and found a good agree-
ment. It is therefore desirable to perform the calculations also for
the meson potential.

There are, however, some differences with the corresponding cal-
culations for the Gauss potential. First the less rapid falling off of
the meson potential leads to a considerable number of high energy
particles. Although the experimental results of Ortner (1940)
are in good agreement with the calculations using the Gauss poten-
tial, the more recent data of Perkins (1947) indicate that the
number of high energy particles is too high to be explained by a
Gauss potential. Taking into account, however, the unrecorded
protons, the agreement of the figures for the meson potential with
the most reliable experimental data is very satisfactory indeed, if
# ' =2x 10" cm.

When computing the energy loss per unit path in nuclear matter,
it is necessary to use the relativistic expression for the kinetic
energy, because otherwise this expression will contain a divergent
integral. Then the upper limit for the mean energy loss per collision
is 31 MeV.

Before the computation some remarks are given about the col-
lision cross section. These remarks refer to the way in which the
Pauli principle is taken in account. It appears that the formulae
must be altered slightly. For the results of Heisenberg and
B agge these alterations are only of little importance.

I1. The collision cross section. In this section we shall discuss the
collision cross section only so far as is necessary to bring about the
changes to be made in the theory of Heisenberg. For the
derivation of the formulae we refer to the book of Rosenfeld
whose notations we shall also use. All calculations are made with
the help of the meson potential e™/x», without using meson field
theory, and neglecting the electrostatic interaction of the nucleons.
We shall assume that we may represent the heavy nucleus by a
Fermi gas of the composing nucleons. For the collision cross section
we take the formula derived with the Born approximation. Then the
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equation for the differential collision cross section of a neutron with
one of the particles of the nucleus, reads

dS = (c/o") aV[R) 1 (| Uy ) I d12, ()

with v{" the velocity of the impinging neutron. The indices (1) and
(2) refer to the impinging and knocked-on particles respectively
and the indices () and (f) refer to the initial and final states; V is
the volume of the nucleus, (!U,,,|f) the matrix element of the
nuclear potential and dn, the number of stationary states of the
system per unit energy after collision. It is necessary to take into
account the identity of impinging and knocked particles with respect
to the Pauli principle. After averaging over spin and charge varia-
bles, we have:

. 2 osp ) 4:;2[ 2 )2 2_’].
|(1’!Unucl|f)l = 0.52 I/'2 2.6 (l_*_(p/h,‘) +(\]+(p’/ﬁ;¢)2) ’ (2)

J is the strength of the meson potential with range »~' and #, p’ are
the magnitudes of the momentum transfers in the collision:

p=p!"—p" (3a)
p’ — psl) p(z) — p(l) (2) —p. (3b)
For energy and momentum we have the conservation laws
p" + p? = pi" + p?, (4)
eV (M7 + pI2) + ¢/ (M7 + p?)
= cv/(M3* + p{"%) + cv/(M*P + pP?) 5)

or
EM + E® = E;I) + E;z).

The second term in (2) is caused by the Pauli principle. After the
collision it is impossible to decide which of the particles is the im-
pinging one. So we have two terms, the first indicating that the
particle with lower energy is particle (2), the second that it is par-
ticle (1). In the first case the momentum exchange is small, in the
second large. In the latter case the impinging neutron communicates
most of its energy to the knocked-on particle. So we may use our
formula only up to half the largest possible energy transfer. Then
the energies of both particles are equal after the collision, the cor-
responding momentum being p,. From (4) and (5) follows

EW 4+ EP = 2y/(M32 + ).



PENETRATION OF NUCLEONS THROUGH HEAVY NUCLEI 533

The second term in (2) is the term for large energy exchange. We
shall call it the exchange term.

These differences in the momentum exchange will also appear in
the expression for dn,. We introduce polar coordinates in momen-
tum space with p{" as polar axis and counting the azimuths from
the plane (p{", p®). The coordinates of p are p, 6 and ¢ with
¢ = cos 6. For the following we put p{® = 0. Then

=+ p7 —2pp" L.
For a given momentum exchange , dn, is *)
V(MR 4 pY — Mc)
dn, ( ) \ (n ( - \/(Mzcz + p(l)?)
Of course, this formula is also valid for large momentum exchange.
The exchange term, however, is a function of p’ = p!" — p, and
for the integrations it is desirable to have dn, as a function of p’.

Denoting the coordinates of p’ by p’, 8’ and ¢’ with ¢ = cos ¢,
we find

31319

V(M 4 p) — Me
" (2mh) R V(M + p(12)

The form of this equation is the same as that in p. Then the cross
section is:

37"75

_ c? 2 2 V(M2 + p?) — Mc\ p
=B -—| -— — dpd
% =8 sl i Vg
+ (similar term in p’ and ¢’),
where
2
B =052 2; -

The first term must be integrated over p from O up to p,, the second
over p’ from p, to p{" (cf. equ. (2)). '

Introducing
B=Mc(hix, a=pV[hx, u=p[hx, u'=p'[hx, uy=p, b, y=+/(a*+£?)
we have:

v 4 yHB— VP45
Y —B (1 +4%)? ¥

+ (similar term in %’ and ¢') with «’ > u,.

ds=B ududp withu < u,

*) Cf.Rose nfeld loc. cit.
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We can combine these two terms, if there is no function of p to
be integrated. So we have for the total cross section

=2nf—du

For some calculations it is desirable to take the energy, expressed
in units § = /(2 — 1), as the independent variable, Putting

v_]/(ﬁz—{—u),
! 4 y+F—

—p? & (¥ —1)? y
The limits are ﬂ/a, (B + y)/26 =wv, and (B + 9)/26 = v,, ¥/o.

we find

ds—B v vdv de.

10'26cm2

Total colllsion cross—section S(E)
o N @ ©
] j | I

n
I

3 41540 28:m2
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] | | | ] | {
184 480 920 1840 4600 9200 18300 MeV,
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Fig. 1. The mean’ total collision cross-section for a given kinetic energy
of one of the particles, the other being at rest.

Figure | shows s as a function of the kinetic energy of the im-
pinging neutron. The limiting value of 5 for large energy is

4.15 X 107%cm?® if »'=2 x 102 cm
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We have also computed the relative probability of a collision with
E,
a given energy transfer, i.e. the ratio of / ds to s. In the table we
Ep
give the probability in per cents of the total cross section for a col-
lision with an energv transfer between some important limits.

TABLE 1

The probability of an energy
transfer in a given interval for a
collision of two nucleons in per
cents of the total cross-section

Probability
Interval .
in %
46-92 MeV 5.7
92-138 ,, 1.9
138-184 ,, i 0.95
>184 | 2.59

These probabilities are practically independent of the energy

of the impinging nucleon, provided that this energy is higher than
400 MeV.

II1. The energy distribution of the knocked-out particles. Instead
of directly comparing the computed energy distribution with the
experimental data, it is better to compare the ratios of the number
of nucleons with an energy larger than a given energy E (E is the
non relativistic kinetic energy of the knocked nucleon after the col-

lision). This number is proportional to s(E) = f ds. Using the
4

general formulae for 5 (E) given by Rosenfel d', we find for the
meson potential

Hip—1)
_ ' - H =17 2
—_ 2(,2 2 . d
s(E) /[21'1(77-1-1) X 2 T2 x
Hn+n

with H = p%/hx and 5 = +/(E/E°), EC being the nonrelativistic
maximum kinetic energy of the zero point distribution and 9, the
corresponding momentum. Performing the integration we find with
the substitution 2Ht = 1 + H3(n* — 1):

S(E) ~ (#* + 1) arc cotg ¢ — 1.



536 G. C. J. ZWANIKKEN

This formula is valid only if the contribution of collisions with high
energy transfer is negligible, for only then we may take oo instead
of a as upper limit of integration. The energy E inside the nucleus
corresponds with an energy E, = E — (E° + &) outside, & being
the average binding energy per nucleon. The values used are
E® = 24.2 MeV and ¢ = 8.6 MeV.

It is, however, impossible to measure the number of nucleons
n(E,) with an energy outside the nucleus larger than E, with ac-
curacy. Very high energies will not be recorded in the photographic
emulsion, while nucleons of 100-200 MeV easily escape attention.
So we can only compare the number of particles in certain intervals.
On the other hand this is also desirable from a theoretical point of
view, in order to eliminate the contribution of the upper limit of
integration, for which we took oco. If E, is an energy, which is cer-
tainly fully recorded in the emulsion, we have to compare 5 (E.) —
— 5(E)) with n(E;) — »n(E,). Then the choice of the upper limit
of # is of no importance, except for the contribution of the exchange
term. If the energy of the impinging particle is very high, we may
neglect this contribution which is S(E\" — E)) — S(E!Y — E ).

The table for s(E) is computed for three values of x~', namely
1.8 x 107" ¢m, 2.0 X 107" cm and 2.2 X 107'® cm, neglecting the
exchange contribution. A factor 1.56x]?/Hv\"?A%¢* has been omitt-
ed in s(E). From it we calculated the relative numbers of nucleons
o= {s(E;) —s(E|)}/{s(10 MeV) — 5(E))} with an energy between E|
and E, for two values of E, resp. 110 MeV and 60 MeV. We have also
computed these relative numbers for a Gauss potential, assuming
%' = 2.0 x 107® cm. The experimental ratios are computed from
measurements by Perkins (1947) and Wambacher (1940)
and refer respectively to 46 and 194 tracks of E, > 10 MeV.

From table II it is clear that the three values chosen for »~
satisfactorily agree with the figures of Wambacher. It is,
however, impossible to make a choice for ™', different factors being
responsible for this. First stars with a small number of proton tracks
were excluded froem the statistics. (This is necessary because stars
with a small number of tracks might originate from light nuclei.)
A large number of single tracks and of stars, attributed to light
nuclei, must originate from a collision with a heavy nucleus. The
energy of the impinging neutron was supposed to be larger than
200 MeV. Only in that case may the exchange contribution be

1
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neglected. The latter will give only a slight increase in the computed
number of particles, especially for the higher energies if the energy
of the impinging neutron is about 2E,. Further the effect of se-
condary collisions has been neglected, which collisions would result
in a increase in the number of low energy particles at the cost of
those of high energy. Finally it is important to remark that a dif-
ferent choice of E? gives about the same percentage change in the
best value of »~'. These small differences make it impossible to make
a choice of »7', even with the help of a large number of observations.

TABLE 11
The integrated collision cross-section s(/,) in units 1.56 st/ /Hv 4 and the
relative number of nucleons @ with an energy outside the nucleus between I, and £,
E, E(f:‘.) i ?(15, = 110 MeV) ‘

MeV = x v 3 Gauss
(MeV) 1.8 20 | 22 1.8 20 ' 22 P Gauss
10 0.571 0.548 0.523 1co | 100 | 100 100 | 100
20 0.4365 0.4115 0.387 69.3 68.1 : 67.1 48 | 56.0
30 0.350 0.327% 0.303 49.6 48.5 46.5 | 24 || 32.7
40 0.292 0.270 0.2455 36.4 35.0 32.7 19.5 | 17.3
50 0.2495 0.229 0.211 26.8 25.5 24.3 1S 10.3
6C 0.216 0.198 0.184 19.1 i 18.2 17.8 8.6 5.3
70 0.192 0.177 0.163 13 6 [ |3 3 12.7 6.5 |' 2.1
90 0.157 0.144 0.132 : 5.2 4.3 ' 0.9

110 0.132 0.120 i 0.1105 | 3
o(E; = 60 .\le\ )
E,
(MeV) ®7l = : I8 W Gauss
: 1.8 2,0 22 jooo
10 100 100 100 yl 100 100 100
20 62.2 61.2 59.9 | 43 60.8 83.5
30 37.8 37.1 3. | 16.7 34.6 n 28.4
40 21.4 20.8 18.2 § 1.9 24.2 12.7
50 | 10.0 8.9 8.0 | 7.2 8.8 ” 5.2
P Perkius; W Wambacher. %! in 107" cm.

About the directions of the knocked-out nucleons we can say
the following:

If E\V is very large, the direction of the knocked nucleon will
lie in a plane perpendicular to the direction of the neutron. If there
are secondary collisions the tracks in the emulsion may considerably
deviate from this plane. So we expect the larger energy tracks to lie
in the perpendicular plane, the slower nucleons having a more
isotropic distribution. If the neutron energy is about 200 MeV or
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less, the only thing we may expect is, on the average, a slight pre-
ference for the direction of the incoming neutron.

IV. Energy loss in nuclear matter. On its way through a nucleus
a fast nucleon loses kinetic energy owing to collisions. According to
a theorem by Williams the mean energy loss per unit path is
the same as though the nucleons inside the nucleus were at rest.
So we have to integrate p from 0 to p, and p’ from p, to pi".

The functional form of the energy loss in p is different from that
in p’, viz.

cV/(MPP+ P —Mc? and cv/(M3+ piV2) — /(M3 + ).

After performing a transformation to the variables v, a, §, ¥ and é
they read ckix (dv — B) and chx (y — dv), writing v for v’

The energy loss per unit length is dE"/ds = — (A/V) [ Eds,
E teing the energy loss and (4/V) the density of nuclear matter.

2m (B+y)28
dEW" A i /‘ 4
w =B || |G rrh— s Go—prvdvdy
0 ﬁs
2r vy
f/ A+ B — ) (p— o) v dy
0 (8+y)/28

— (A[V)chxB (2my[a’) [y + 38 — 40) log {4(y + B)*— &%
—6(y + B) log (y + B) + & — (2y + B — 20) log (¥* — &)
+ (4y + 28) log (y + 6) + (2y + 4) log (B + 9)].

For x™' = 2x 10" cm we find $=9.40, 6=9.35 and /6 = 1.0057.
Putting P = y/6 we have dEV|ds = — (A]V) C{(P)
where C = (2r/8)chxB = 1.04 n]J?[dchx®

and
f(P) = P(P?>—1.0114)7'[(3P — 0.9829) log (3 P — 0.4971)
— (BP +7.017) log (3} P + 1.503) + (2P + 3.006) log (P + 1)
— (2P — 0.994) log (P — 1) 4+ (2P + 4.023) log 2.006
+ (2P + 0.023) log 9.35].
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Graph 2 shows this function f(P) (using the log,) and the
energy loss per collision, as a function of the kinetic energy of the
impinging neutron. The transformation factor to log, and to MeV
may be taken together with C. Then C = 50.4 x 1072 MeV.

6
f(p) Energy loss per unit path f(p)
T 5 ——-_ Energy loss per collision

MeV
30

20

10

S IS T T N N ) P
46 92 184 460 820 1840 4600 S200 18400 MeV.
— 5 Energy E

Fig. 2. The energy loss per unit path in nuclear matter f(P) in units
(A]V) % 2.39n]%/dchx® and the mean energy loss per collision of a
nucleon with kinetic energy E.

From the graph one sees that the energy loss of a nucleon with
kinetic energy larger than 400 MeV is practically constant. Hence it
is permitted to write for the total energy loss of fast nucleon run-
ning through a nucleus as

AE = As.(A[V) [(P) x 50 x 1072 MeV
For Ag and Br (4/V) 4s ¥ 10%, So the mean energy loss of a very

fast nucleon has the limit 130 MeV. This value would seem too low
to explain the frequent occurrence of stars with an energy beyond
300 MeV.

To get an idea of the probability of large star energies in the
above theory we have taken the following device. The mean num-
ber of collisions within a nucleus of Agor Bris 5(4/V) 4s (s = total
cross section). From figure 1 it follows that § «© 4.5 x 107% cm?

for large energies. Further (4/V)4s © 10®cm™. So there are
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about 4.5 primary collisions. For high energy particles the number
is about 4, which number we shall use. With the help of table I
we compute the probabilities for two and three collisions with an
energy exchange in the intervals (1) 46-92 MeV, (2) 92-138 MeV and
(3) 138184 MeV. Only these intervals are important, for nucleons
with smaller energy do not contribute much while high energy par-
ticles will escape without being recorded, the probability for se-
condary collisions with large energy transfer being of the order of
59%,. So we get a table for the probability of two collisions in interval
(1), (2) or (3); one collision in (1) and one in (2) and so on. Taking
for each interval a mean value of the energy transfer, we get a
list of probabilities for collisions with a certain mean energy transfer.
Adding all probabilities with energy transfer within certain inter-
vals we find roughly the following probabilities for an energy trans-
fer to the nucleus: :

150-250 MeV 2%,
250-350 ,, 0.1%
350-450 ,, 0.019%

Having no figures at my disposal, I could not make a comparison
with experimental data. As the probability for collisions with a
small energy transfer is great and these collisions will not be recorded
as stars in the emulsion, the absolute value of the above figures is
not very important. Only the relative values may be compared with
statistics of star energies.

If the energy of the impinging nucleon is of order of 300-400 MeV,
these figures will be higher because after two collisions of about 100
MeV the remaining energy of the neutron is also of this order.

Another way to explain the occurrence of high energy stars is
the hypothesis that the impinging particle is a meson or an a-par-
ticle. In the first case the energy will mainly originate from the mass
energy of the meson. The loss of mass energy in two steps seems
favourable, this energy being distributed among several nucleons.
In the second case we can roughly say that the collision cross sec-
tion of an a-particle is a few times that of a nucleon with } of the
kinetic energy of the a-particle. The mean energy loss is then a few
times that of a nucleon, i.e. the total energy, if the energy of the
a-particle is about 500 MeV. It is, however, impossible that this
particle forms a part of the cosmic radiation. We must therefore
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assume that it originates in a collision of a constituent of the cosmic
radiation with the same or a neighbouring nucleus. These possi-
bilities are still to be examined.

I wish to express my thanks to prof. L. Rosen feld for many
useful discussions.

Received June 24th 1948.
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