427 research outputs found
Enhanced collectivity in 74Ni
The neutron-rich nucleus 74Ni was studied with inverse-kinematics inelastic
proton scattering using a 74Ni radioactive beam incident on a liquid hydrogen
targetat a center-of-mass energy of 80 MeV. From the measured de-excitation
gamma-rays, the population of the first 2+ state was quantified. The
angle-integrated excitation cross section was determined to be 14(4) mb. A
deformation length of delta = 1.04(16) fm was extracted in comparison with
distorted wave theory, which suggests that the enhancement of collectivity
established for 70Ni continues up to 74Ni. A comparison with results of shell
model and quasi-particle random phase approximation calculations indicates that
the magic character of Z = 28 or N = 50 is weakened in 74Ni
Measurement of excited states in 40Si and evidence for weakening of the N=28 shell gap
Excited states in 40Si have been established by detecting gamma-rays
coincident with inelastic scattering and nucleon removal reactions on a liquid
hydrogen target. The low excitation energy, 986(5) keV, of the 2+[1] state
provides evidence of a weakening in the N=28 shell closure in a neutron-rich
nucleus devoid of deformation-driving proton collectivity.Comment: accepted for publication in PR
Evolution of the energy spacing in odd-mass K, Cl and P isotopes for
The energy of the first excited state in the neutron-rich N=28 nucleus 45Cl
has been established via in-beam gamma-ray spectroscopy following proton
removal. This energy value completes the systematics of the
E(1/2^+_1)-E(3/2^+_1) level spacing in odd-mass K, Cl and P isotopes for
N=20-28. The results are discussed in the framework of shell-model calculations
in the sd-fp model space. The contribution of the central, spin-orbit and
tensor components is discussed from a calculation based on a proton single-hole
spectrum from G-matrix and pi + rho meson exchange potentials. A composite
model for the proton 0d_{3/2}-1s_{1/2} single-particle energy shift is
presented.Comment: Phys. Rev. C, in pres
Two-neutron knockout from neutron-deficient Ar, S, and Si
Two-neutron knockout reactions from nuclei in the proximity of the proton
dripline have been studied using intermediate-energy beams of neutron-deficient
Ar, S, and Si. The inclusive cross sections, and also the
partial cross sections for the population of individual bound final states of
the Ar, S and Si knockout residues, have been determined
using the combination of particle and -ray spectroscopy. Similar to the
two-proton knockout mechanism on the neutron-rich side of the nuclear chart,
these two-neutron removal reactions from already neutron-deficient nuclei are
also shown to be consistent with a direct reaction mechanism.Comment: Phys. Rev. C, rapid communication, in pres
Population of bound excited states in intermediate-energy fragmentation reactions
Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a
wide range of reaction mechanisms, ranging from direct reactions to statistical
processes. We examine this transition by measuring the relative population of
excited states in several sd-shell nuclei produced by fragmentation with the
number of removed nucleons ranging from two to sixteen. The two-nucleon removal
is consistent with a non-dissipative process whereas the removal of more than
five nucleons appears to be mainly statistical.Comment: 5 pages, 6 figure
Variation with mass of \boldmath{B(E3; 0_1^+ \to 3_1^-)} transition rates in even-mass xenon nuclei
transition matrix elements have been measured for
even-mass Xe nuclei using sub-barrier Coulomb excitation in inverse
kinematics. The trends in energy and
excitation strengths are well reproduced using phenomenological models based on
a strong coupling picture with a soft quadrupole mode and an increasing
occupation of the intruder orbital.Comment: 5 pages, 4 figures, PRC in pres
Recommended from our members
Gas flow in and out of a nuclear waste container
We analyze the flow of gases out of and into a high-level-waste container in the unsaturated tuff of Yucca Mountain. Containers are expected to fail eventually by localized cracks and penetrations. Even though the penetrations may be small, argon gas initially in the hot container can leak out. As the waste package cools, the pressure inside the container can become less than atmospheric, and air can leak in. {sup 14}C released from the hot fuel-cladding surface can leak out of penetrations, and air inleakage can mobilize additional {sup 14}C and other volatile radioactive species as it oxidizes the fuel cladding and the spent fuel. In an earlier paper we studied the gas flow through container penetrations occurring at the time of emplacement. Here we analyze the flow of gas for various penetration sizes occurring at 300 years. 3 refs., 2 figs
Probing shell structure and shape changes in neutron-rich sulfur isotopes through transient-field g factor measurements on fast radioactive beams of 38S and 40S
The shell structure underlying shape changes in neutron-rich nuclei near N=28
has been investigated by a novel application of the transient field technique
to measure the first-excited state g factors in 38S and 40S produced as fast
radioactive beams. There is a fine balance between proton and neutron
contributions to the magnetic moments in both nuclei. The g factor of deformed
40S does not resemble that of a conventional collective nucleus because spin
contributions are more important than usual.Comment: 10 pages, 6 figures, accepted in PR
Shell structure at N=28 near the dripline: spectroscopy of Si, P and S
Measurements of the N=28 isotones 42Si, 43P and 44S using one- and two-proton
knockout reactions from the radioactive beam nuclei 44S and 46Ar are reported.
The knockout reaction cross sections for populating 42Si and 43P and a 184 keV
gamma-ray observed in 43P establish that the d_{3/2} and s_{1/2} proton orbits
are nearly degenerate in these nuclei and that there is a substantial Z=14
subshell closure separating these two orbits from the d_{5/2} orbit. The
increase in the inclusive two-proton knockout cross section from 42Si to 44S
demonstrates the importance of the availability of valence protons for
determining the cross section. New calculations of the two-proton knockout
reactions that include diffractive effects are presented. In addition, it is
proposed that a search for the d_{5/2} proton strength in 43P via a higher
statistics one-proton knockout experiment could help determine the size of the
Z=14 closure.Comment: Phys. Rev. C, in pres
- …