1,111 research outputs found

    Quantum phase transitions in a new exactly solvable quantum spin biaxial model with multiple spin interactions

    Full text link
    The new integrable quantum spin model is proposed. The model has a biaxial magnetic anisotropy of alternating coupling between spins together with multiple spin interactions. Our model gives the possibility to exactly find thermodynamic characteristics of the considered spin chain. The ground state of the model can reveal spontaneous values of the total magnetic and antiferromagnetic moments, caused by multiple spin couplings. Also, in the ground state, depending on the strength of multiple spin couplings, our model manifests several quantum critical points, some of which are governed by the external magnetic field

    Time-dependent spin-wave theory

    Full text link
    We generalize the spin-wave expansion in powers of the inverse spin to time-dependent quantum spin models describing rotating magnets or magnets in time-dependent external fields. We show that in these cases, the spin operators should be projected onto properly defined rotating reference frames before the spin components are bosonized using the Holstein-Primakoff transformation. As a first application of our approach, we calculate the reorganization of the magnetic state due to Bose-Einstein condensation of magnons in the magnetic insulator yttrium-iron garnet; we predict a characteristic dip in the magnetization which should be measurable in experiments.Comment: 6 pages, 5 figures, final version published in PR

    Integrable models of coupled Heisenberg chains

    Full text link
    We show that the solutions of the Yang--Baxter equation invariant under the action of the Yangian Y(sl2)Y(sl_2) lead to inhomogenous vertex models. Starting from a four dimensional representation of Y(sl2)Y(sl_2) we obtain an integrable family of coupled Heisenberg spin-121\over2 chains. Some thermodynamical properties of this model are studied by means of the algebraic Bethe Ansatz.Comment: 10 pages, latex, 5 postscript figure

    Character of magnetic excitations in a quasi-one-dimensional antiferromagnet near the quantum critical points: Impact on magneto-acoustic properties

    Full text link
    We report results of magneto-acoustic studies in the quantum spin-chain magnet NiCl2_2-4SC(NH2_2)2_2 (DTN) having a field-induced ordered antiferromagnetic (AF) phase. In the vicinity of the quantum critical points (QCPs) the acoustic c33c_{33} mode manifests a pronounced softening accompanied by energy dissipation of the sound wave. The acoustic anomalies are traced up to T>TNT > T_N, where the thermodynamic properties are determined by fermionic magnetic excitations, the "hallmark" of one-dimensional (1D) spin chains. On the other hand, as established in earlier studies, the AF phase in DTN is governed by bosonic magnetic excitations. Our results suggest the presence of a crossover from a 1D fermionic to a 3D bosonic character of the magnetic excitations in DTN in the vicinity of the QCPs.Comment: 5 pages, 4 figures. Accepted for publication by Phys. Rev

    Commensurate-Incommensurate Phase Transitions for Multichain Quantum Spin Models: Exact Results

    Get PDF
    The behavior in an external magnetic field is studied for a wide class of multichain quantum spin models. It is shown that the magnetic field together with the interchain couplings cause commensurate-incommensurate phase transitions between the gapless phases in the ground state. The conformal limit of these models is studied and it is shown that the low-lying excitations for the incommensurate phases are not independent. A scenario for the transition from one to two space dimensions for the integrable multichain models is proposed. The similarities in the external field behavior for the quantum multichain spin models and a wide class of quantum field theories are discussed. The exponents for the gaps caused by relevant perturbations of the models are calculated.Comment: 23 pages, LaTeX, typos correcte

    Non-specific cellular uptake of surface-functionalized quantum dots

    Full text link
    We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically-significant moieties, e.g. carboxyl, amino, streptavidin were used, in combination with the surface derivatization with polyethylene glycol (PEG) in a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG-derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specific internalization is undesirable and also when it is intended for material to be internalized as efficiently as possible. Published article at: http://iopscience.iop.org/0957-4484/21/28/285105/Comment: 14 pages 7 figure

    Observation of the novel type of ordering: Spontaneous ferriquadrupolar order

    Full text link
    Using Raman and infrared spectroscopies the spontaneous ferriquadrupolar ordering has been observed in the rare-earth-based system KDy(MoO4_4)2_2. Ordered quadrupoles in the electron subsystem attend non-equivalent distortions of rare-earth ions in the ordered phase. The mean field theory explaining the onset of such a type of ordering has been constructed.Comment: 6 pages, 4 figure

    Magnetic Excitations in the Spin-1 Anisotropic Heisenberg Antiferromagnetic Chain System NiCl2_2-4SC(NH2_2)2_2

    Full text link
    NiCl2_2-4SC(NH2_2)2_2 (DTN) is a quantum S=1 chain system with strong easy-pane anisotropy and a new candidate for the Bose-Einstein condensation of the spin degrees of freedom. ESR studies of magnetic excitations in DTN in fields up to 25 T are presented. Based on analysis of the single-magnon excitation mode in the high-field spin-polarized phase and previous experimental results [Phys. Rev. Lett. 96, 077204 (2006)], a revised set of spin-Hamiltonian parameters is obtained. Our results yield D=8.9D=8.9 K, Jc=2.2J_c=2.2 K, and Ja,b=0.18J_{a,b}=0.18 K for the anisotropy, intrachain, and interchain exchange interactions, respectively. These values are used to calculate the antiferromagnetic phase boundary, magnetization and the frequency-field dependence of two-magnon bound-state excitations predicted by theory and observed in DTN for the first time. Excellent quantitative agreement with experimental data is obtained

    Multichannel Kondo Screening in a One-Dimensional Correlated Electron System

    Full text link
    We present the exact Bethe Ansatz solution of a multichannel model of one- dimensional correlated electrons coupled antiferromagnetically to a magnetic impurity of arbitrary spin S. The solution reveals that interactions in the bulk make the magnetic impurity drive both spin and charge fluctuations, producing a mixed valence at the impurity site, with an associated effective spin S_eff > S in the presence of a magnetic field. The screening of the impurity spin is controlled by its size independently of the number of channels, in contrast to the multichannel Kondo effect for free electrons.Comment: 5 pages Revtex. Final revised version to appear in Europhys. Let
    corecore