14 research outputs found

    Measuring diversity in medical reports based on categorized attributes and international classification systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Narrative medical reports do not use standardized terminology and often bring insufficient information for statistical processing and medical decision making. Objectives of the paper are to propose a method for measuring diversity in medical reports written in any language, to compare diversities in narrative and structured medical reports and to map attributes and terms to selected classification systems.</p> <p>Methods</p> <p>A new method based on a general concept of f-diversity is proposed for measuring diversity of medical reports in any language. The method is based on categorized attributes recorded in narrative or structured medical reports and on international classification systems. Values of categories are expressed by terms. Using SNOMED CT and ICD 10 we are mapping attributes and terms to predefined codes. We use f-diversities of Gini-Simpson and Number of Categories types to compare diversities of narrative and structured medical reports. The comparison is based on attributes selected from the Minimal Data Model for Cardiology (MDMC).</p> <p>Results</p> <p>We compared diversities of 110 Czech narrative medical reports and 1119 Czech structured medical reports. Selected categorized attributes of MDMC had mostly different numbers of categories and used different terms in narrative and structured reports. We found more than 60% of MDMC attributes in SNOMED CT. We showed that attributes in narrative medical reports had greater diversity than the same attributes in structured medical reports. Further, we replaced each value of category (term) used for attributes in narrative medical reports by the closest term and the category used in MDMC for structured medical reports. We found that relative Gini-Simpson diversities in structured medical reports were significantly smaller than those in narrative medical reports except the "Allergy" attribute.</p> <p>Conclusions</p> <p>Terminology in narrative medical reports is not standardized. Therefore it is nearly impossible to map values of attributes (terms) to codes of known classification systems. A high diversity in narrative medical reports terminology leads to more difficult computer processing than in structured medical reports and some information may be lost during this process. Setting a standardized terminology would help healthcare providers to have complete and easily accessible information about patients that would result in better healthcare.</p

    Chemical identification and properties of element 112

    No full text
    The second experiment on the chemical identification of element 112 performed at the FLNR (Dubna) is reported. Similar to the first test in 2000, the 2 mg/cm sup 2 sup n sup a sup t U target was bombarded with the 262-MeV sup 4 sup 8 Ca ions aiming at the production of sup 2 sup 8 sup 3 112, which as reported earlier decays by SF with a half-life of 3 min. The bombardment products recoiling from the target were thermalized in flowing helium and transported by the gas to detectors 25 m apart. Of all the heavy elements, the reaction products, only Hg, Rn and At were efficiently transported and thus selectively isolated. This time the beam dose was much higher (2.8 centre dot 10 sup 1 sup 8) and two different devices for detecting fission fragments and alpha particles were employed. The device used earlier was an assembly of sixteen PIPS detectors coated with Au to detect 'Hg-like' nuclides being adsorbed on Au at ambient temperature. The new one was a flow-through ionization chamber, 5000 cm sup 3 in volume, which served for detecting the activities still remaining in the gas after passing through the PIPS detector channel. Both devices were placed into an assembly of 126 neutron counters to detect prompt fission neutrons. In 22.5 days of the bombardment, eight fission events in coincidence with neutrons were observed, all of them in the ionization chamber, while only one background count could be expected during that time. Hence, most of the observed decays can be attributed to element 112. The simultaneously produced 49-s alpha-active sup 1 sup 8 sup 5 Hg was completely deposited on the first PIPS detector. The values of adsorption enthalpy calculated from the experimental data confirm that the interaction of element 112 with the Au surface is much weaker than that of Hg. These facts point to the 'Rn-like' rather than 'Hg-like' behavior of element 112 in the given chemical environment. A production cross section of about 2 pb was evaluated for the nuclide unde
    corecore