6 research outputs found

    Detecting and pyramiding target QTL for plant- and grain-related traits via chromosomal segment substitution line of rice

    Get PDF
    IntroductionPlant height and grain length are important agronomic traits in rice, exhibiting a strong effect on plant architecture and grain quality of rice varieties.MethodsMethods: A novel rice chromosomal segment substitution line (CSSL), i.e., CSSL-Z1357, with significantly increased plant height (PH) and grain length (GL) was identified from CSSLs constructed by using Nipponbare as a receptor and a restorer line Xihui 18 as a donor. Seven agronomic traits of PH, PL, GL, GW, GPP, SPP, and TGW were phenotyped, and REML implemented in HPMIXED of SAS were used to detect the QTL for these traits. Secondary CSSLs were screened out via marker-assisted selection (MAS) to estimate the additive and epistatic effects of detected QTLs, evaluating the potential utilization of pyramiding the target QTLs for yield and quality improvement of rice varieties.Results and DiscussionResults and Discussion: CSSL-Z1357 carried nine segments from Xihui 18 with an average segment length of 4.13 Mb. The results show that the long grain of CSSL-Z1357 was caused by the increased number of surface cells and the length of the inner glume. Thirteen quantitative trait loci were identified via the F2 population of Nipponbare/CSSL-Z1357, including three each for GL (qGL-3, qGL-6, and qGL-7) and PH (qPH-1, qPH-7, and qPH-12I), among which qGL-3 increased GL by 0.23 mm with synergistic allele from CSSL-Z1357. Additionally, three single (S1 to S3), two double (D1, D2), and one triple segment (T1) substitution lines were developed in F3 via MAS. Results show that pyramiding the segments from Chr.3 (qGL-3 and qPH-3), Chr.6 (qGL-6 and qPH-6), and Chr.7 (Null and qPH-7) tended to result in better phenotype of increased GL and PH and decreased grain width, providing a potential basis for enhancing grain yield and quality in rice breeding

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Study of Machining Characteristics of Micro EDM in Nitrogen Plasma Jet

    No full text
    Micro electrical discharge machining (EDM) has been used to drill micro-holes and to generate micro-features for applications in automotive, aerospace and biomedical industries. The tool electrode wear ratio in micro-EDM usually is larger than that in conventional EDM process. It has been reported that the electrode wear ratio is almost zero in gas. However, its narrow discharge gap leads to frequent occurrence of abnormal discharges. In order to enlarge the discharge gap in micro-EDM, Nitrogen plasma jet (NPJ) has been used as the working media for micro-EDM in this study. NPJ is generated by using a needle-cylinder type corona discharge with an AC power supply in pure nitrogen gas. A RC-type pulse generator is used to realize micro electrical discharges in this investigation. It is expected that the electrons and ions in NPJ increase the electrical conductivity in the discharge gap. Thus, a large discharge gap can be obtained. To investigate the machining characteristics of micro-EDM in NPJ, series of experiments in NPJ, nitrogen jet (NJ) and deionized water (DIW) have been carried out. The discharge distance, machining time, electrode wear and surface roughness under different conditions have been recorded. The measured data has been analyzed together with the discharge signals. It was found that the discharge distance in NPJ is larger than that in NJ. The machining process in NPJ is much more stable than in NJ. The observed volumetric difference of electrode wear is very small, probably due to the small total material removal. The machining efficiency in DIW is the highest. However, the surface roughness in DIW is worse than that in NPJ.status: publishe

    <i>Euchlorocystis marina</i> sp. nov. (Oocystaceae, Trebouxiophyceae), a New Species of Green Algae from a Seawater Shrimp Culture Pond

    No full text
    Oocystaceae is a cosmopolitan family of green algae with distinct morphology and ultrastructure. Most of the reported species in this family are freshwater species, and there are few marine species reported. In this study, we describe a new marine species of Oocystaceae, Euchlorocystis marina sp. nov. based on material collected from a seawater shrimp culture pond in Zhanjiang, China. An integrative approach, including phylogenetic analyses of 18S rDNA, light microscopy, and transmission electron microscopy, was used for the taxonomic study of the strains. Morphological observation results showed that it has a multilayer thick cell wall, multiple pyrenoids in the chloroplast, and usually 2–16 cells forming a colony in the extended mother cell wall. These features are morphologically similar to the genus Euchlorocystis and are distinguished from other taxa of the family Oocystaceae. The 18S rDNA phylogenetic trees revealed that the strains and Euchlorocystis subsalina formed an independent clade in Oocystaceae with robust support. However, horseshoe-shaped chloroplasts and rounder cells morphologically distinguished it from Euchlorocystis subsalina. Apart from the morphology, the direct comparison of sequences also supported that they were distinct species. The discovery and description of the new species enriches the marine species record of the family Oocystaceae

    NaCl Promotes the Efficient Formation of Haematococcus pluvialis Nonmotile Cells under Phosphorus Deficiency

    No full text
    Natural astaxanthin helps reduce the negative effects caused by oxidative stress and other related factors, thereby minimizing oxidative damage. Therefore, it has considerable potential and broad application prospects in human health and animal nutrition. Haematococcus pluvialis is considered to be the most promising cell factory for the production of natural astaxanthin. Previous studies have confirmed that nonmotile cells of H. pluvialis are more tolerant to high intensity of light than motile cells. Cultivating nonmotile cells as the dominant cell type in the red stage can significantly increase the overall astaxanthin productivity. However, we know very little about how to induce nonmotile cell formation. In this work, we first investigated the effect of phosphorus deficiency on the formation of nonmotile cells of H. pluvialis, and then investigated the effect of NaCl on the formation of nonmotile cells under the conditions of phosphorus deficiency. The results showed that, after three days of treatment with 0.1% NaCl under phosphorus deficiency, more than 80% of motile cells had been transformed into nonmotile cells. The work provides the most efficient method for the cultivation of H. pluvialis nonmotile cells so far, and it significantly improves the production of H. pluvialis astaxanthin
    corecore