5 research outputs found

    Research Progress on Nanostructured Radar Absorbing Materials

    No full text

    Shift from Acquisitive to Conservative Root Resource Acquisition Strategy Associated with Increasing Tree Age: A Case Study of <i>Fraxinus mandshurica</i>

    No full text
    Tree age has an important effect on the form and function of fine roots. Previous studies have focused on the variations in root morphological and chemical traits among tree ages, while less attention has been given to the physiological traits, impeding a full understanding of the relationship between root resource acquisition strategy and tree age. Here, we measured root morphological (diameter, specific root length, specific root area and tissue density), chemical (nitrogen concentration) and physiological (respiration and exudation rate) traits of young, middle-aged and mature trees of Fraxinus mandshurica in a temperate secondary forest in northeastern China. Our overall aim was to determine how root traits and related resource acquisition strategy change with tree age. The results showed that from young to mature trees, root diameter gradually increased, but specific root length, specific root area, root nitrogen concentration, respiration and exudation rates all decreased, and the significant differences were mainly found between young and mature trees. Pearson’s correlation analysis revealed that the relationships of root respiration and exudation rates to root morphological and chemical traits depended on tree age and the specific traits examined, but these correlations were all significant except for root tissue density when the data were pooled across all tree age classes. Principal component analysis (PCA) showed that the conservative traits represented by root diameter, and the acquisitive traits such as root respiration and exudation rates and related morphological and chemical traits, occupied two ends of the first axis, respectively, while root tissue density occupied one end of the second axis, partially confirming the conceptual framework of “root economics space”. Standardized major axis (SMA) analysis of root exudation and respiration rates showed that young trees allocated more root carbon flux to the formation of root exudation, compared to middle-aged and mature trees. Our findings suggest that root resource acquisition strategy in F. mandshurica appears to shift from an absorptive to conservative strategy associated with increasing tree age, which may have substantial consequences for individual growth and interspecific competition, as well as belowground carbon allocation in ecosystems

    Environmental Factors Shape Sediment Anammox Bacterial Communities in Hypernutrified Jiaozhou Bay, China▿ †

    No full text
    Bacterial anaerobic ammonium oxidation (anammox) is an important process in the marine nitrogen cycle. Because ongoing eutrophication of coastal bays contributes significantly to the formation of low-oxygen zones, monitoring of the anammox bacterial community offers a unique opportunity for assessment of anthropogenic perturbations in these environments. The current study used targeting of 16S rRNA and hzo genes to characterize the composition and structure of the anammox bacterial community in the sediments of the eutrophic Jiaozhou Bay, thereby unraveling their diversity, abundance, and distribution. Abundance and distribution of hzo genes revealed a greater taxonomic diversity in Jiaozhou Bay, including several novel clades of anammox bacteria. In contrast, the targeting of 16S rRNA genes verified the presence of only “Candidatus Scalindua,” albeit with a high microdiversity. The genus “Ca. Scalindua” comprised the apparent majority of active sediment anammox bacteria. Multivariate statistical analyses indicated a heterogeneous distribution of the anammox bacterial assemblages in Jiaozhou Bay. Of all environmental parameters investigated, sediment organic C/organic N (OrgC/OrgN), nitrite concentration, and sediment median grain size were found to impact the composition, structure, and distribution of the sediment anammox bacterial community. Analysis of Pearson correlations between environmental factors and abundance of 16S rRNA and hzo genes as determined by fluorescent real-time PCR suggests that the local nitrite concentration is the key regulator of the abundance of anammox bacteria in Jiaozhou Bay sediments
    corecore