195 research outputs found

    PGH1, the Precursor for the Anti-Inflammatory Prostaglandins of the 1-series, Is a Potent Activator of the Pro-Inflammatory Receptor CRTH2/DP2

    Get PDF
    Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as “anti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase

    Human neutrophil phosphodiesterase

    Full text link
    Extracts of human neutrophils were examined for phosphodiesterase activity using a radiochemical assay. As reported by other investigators, both high- and low- K m forms of the enzyme were found. Although calmodulin could be measured in these extracts, human neutrophil phosphodiesterase proved not to be calmodulin dependent. Activity of the neutrophil phosphodiesterase was also not altered by physiologic concentrations of indomethacin, p -bromophenacyl bromide, eicosatetraenoic acid, or eicosatetraynoic acid, all inhibitors of arachidonic acid metabolism. These results are relevant to stimulus-secretion coupling in neutrophils, wherein calmodulin-dependent reactions play a vital role.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44535/1/10753_2004_Article_BF00916094.pd

    Impact of Anti-Inflammatory Agents on the Gene Expression Profile of Stimulated Human Neutrophils: Unraveling Endogenous Resolution Pathways

    Get PDF
    Adenosine, prostaglandin E2, or increased intracellular cyclic AMP concentration each elicit potent anti-inflammatory events in human neutrophils by inhibiting functions such as phagocytosis, superoxide production, adhesion and cytokine release. However, the endogenous molecular pathways mediating these actions are poorly understood. In the present study, we examined their impact on the gene expression profile of stimulated neutrophils. Purified blood neutrophils from healthy donors were stimulated with a cocktail of inflammatory agonists in the presence of at least one of the following anti-inflammatory agents: adenosine A2A receptor agonist CGS 21680, prostaglandin E2, cyclic-AMP-elevating compounds forskolin and RO 20-1724. Total RNA was analyzed using gene chips and real-time PCR. Genes encoding transcription factors, enzymes and regulatory proteins, as well as secreted cytokines/chemokines showed differential expression. We identified 15 genes for which the anti-inflammatory agents altered mRNA levels. The agents affected the expression profile in remarkably similar fashion, suggesting a central mechanism limiting cell activation. We have identified a set of genes that may be part of important resolution pathways that interfere with cell activation. Identification of these pathways will improve understanding of the capacity of tissues to terminate inflammatory responses and contribute to the development of therapeutic strategies based on endogenous resolution

    Whole organisms or pure compounds? entourage effect versus drug specificity

    Get PDF
    As the therapeutic use of sacred plants and fungi becomes increasingly accepted by Western medicine, a tug of war has been taking place between those who advocate the traditional consumption of whole organisms and those who defend exclusively the utilization of purified compounds. The attempt to reduce organisms to single active principles is challenged by the sheer complexity of traditional medicine. Ayahuasca, for example, is a concoction of at least two plant species containing multiple psychoactive substances with complex interactions. Similarly, cannabis contains dozens of psychoactive substances whose specific combinations in different strains correspond to different types of therapeutic and cognitive effects. The “entourage effect” refers to the synergistic effects of the multiple compounds present in whole organisms, which may potentiate clinical efficacy while attenuating side effects. In opposition to this view, mainstream pharmacology is adamant about the need to use purified substances, presumably more specific and safe. In this chapter, I will review the evidence on both sides to discuss the scientific, economic, and political implications of this controversy. The evidence indicates that it is time to embrace the therapeutic complexity of psychedelics.2019-07-3

    Reactive oxygen species in phagocytic leukocytes

    Get PDF
    Phagocytic leukocytes consume oxygen and generate reactive oxygen species in response to appropriate stimuli. The phagocyte NADPH oxidase, a multiprotein complex, existing in the dissociated state in resting cells becomes assembled into the functional oxidase complex upon stimulation and then generates superoxide anions. Biochemical aspects of the NADPH oxidase are briefly discussed in this review; however, the major focus relates to the contributions of various modes of microscopy to our understanding of the NADPH oxidase and the cell biology of phagocytic leukocytes

    Correction of characteristic abnormalities of microtubule function and granule morphology in Chediak-Higashi syndrome with cholinergic agonists.

    No full text
    Chediak-Higashi (CH) syndrome is a genetic disorder of children and certain animal species including the beige mouse. We have previously described a membrane abnormality in CH mouse polymorphonuclear leukocytes (PMH). Whereas normal mouse PMN do not form surface caps with concanavalin A except after treatment with agents such as colchicine that inhibit microtubule assembly, CH mouse PMN show spontaneous cap formation. This capping is inhibited by 3',5 cyclic guanosine monophosphate and by the cholinergic agonists carbamylcholine and carbamyl beta-methylcholine that increase 3',5' cyclic guanosine monophosphate generation. These data suggested that microtubule function may be impaired in CH syndrome perhaps secondary to an abnormality in 3',5' cyclic guanosine monophosphate generation. The cholinergic agonists were also shown to prevent development of the giant granules that are pathognomonic of CH syndrome in embryonic fibroblasts isolated from CH mice and cultured in vitro. In this report it is shown that an extreme degree of spontaneous concanavalin A cap formation is also characteristic of peripheral blood PMN from two patients with CH syndrome. This indicates an abnormality of microtubule function in CH syndrome in man. 3',5' cyclic guanosine monophasphate, carbamylcholine, and carbamyl beta-methylcholine reduce spontaneous capping in CH cells. In addition, it is shown that monocytes isolated from the patients' blood and incubated in tissue culture generate a large complement of abnormal granules. When the same cells mature in vitro in the presence of carbamylcholine or carbamyl beta-methylcholine, the proportion of cells containing morphologically normal granules is significantly increased. These responses can be reproduced in vivo in the beige (CH) mouse. Animals treated for 3 wk and longer with carbamylcholine or carbamyl beta-methylcholline show normal granule morphology and a normal degree of concanavalin A cap formation in peripheral blood PMN leukocytes
    corecore