8 research outputs found

    Modular ‘Click-in-Emulsion’ Bone-Targeted Nanogels

    Get PDF
    A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, ~70 nm in diameter and synthesized via an astoichiometric click-chemistry in-emulsion method, controllably display residual, free clickable functional groups. Functionalization with a bisphosphonate ligand results in significant binding to bone on the inner walls of marrow cavities, liver avoidance, and anti-osteoporotic effects.National Institutes of Health (U.S.) (RO1 DE016516)National Institutes of Health (U.S.) (R01 EB000244)Damon Runyon Cancer Research Foundation (DFS-#2050-10

    Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling

    Get PDF
    Despite substantial efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain largely unclear. Here we examined cellular uptake of siRNA delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy as well as defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR, and cathepsins. SiRNA delivery is substantially reduced as ≅70% of the internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes/lysosomes and increased gene silencing of the target gene. Our data suggests that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways

    Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery

    No full text
    Analogous to an assembly line, we employed a modular design for the high-throughput study of 1,536 structurally distinct nanoparticles with cationic cores and variable shells. This enabled elucidation of complexation, internalization, and delivery trends that could only be learned through evaluation of a large library. Using robotic automation, epoxide-functionalized block polymers were combinatorially cross-linked with a diverse library of amines, followed by measurement of molecular weight, diameter, RNA complexation, cellular internalization, and in vitro siRNA and pDNA delivery. Analysis revealed structure-function relationships and beneficial design guidelines, including a higher reactive block weight fraction, stoichiometric equivalence between epoxides and amines, and thin hydrophilic shells. Cross-linkers optimally possessed tertiary dimethylamine or piperazine groups and potential buffering capacity. Covalent cholesterol attachment allowed for transfection in vivo to liver hepatocytes in mice. The ability to tune the chemical nature of the core and shell may afford utility of these materials in additional applications.Alnylam PharmaceuticalsNational Institutes of Health (U.S.) (Grant R01-EB000244-27)National Institutes of Health (U.S.) (Grant 5-R01- CA132091-04)National Institutes of Health (U.S.) (National Research Service Award F32-EB011867

    Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery

    Get PDF
    Nanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)—a therapeutic agent that suppresses the expression of targeted genes. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t[subscript 1/2] ≈ 24.2 min) than the parent siRNA (t[subscript 1/2] ≈ 6 min).National Institutes of Health (U.S.) (Grant EB000244)Alnylam Pharmaceuticals (Firm)National Research Foundation of Korea (Grant NRF-2011-357-D00063)National Institutes of Health (U.S.) Centers of Cancer and Nanotechnology Excellence (Grant U54 CA151884
    corecore