16 research outputs found

    Bilateral Filter Regularized L2 Sparse Nonnegative Matrix Factorization for Hyperspectral Unmixing

    No full text
    Hyperspectral unmixing (HU) is one of the most active hyperspectral image (HSI) processing research fields, which aims to identify the materials and their corresponding proportions in each HSI pixel. The extensions of the nonnegative matrix factorization (NMF) have been proved effective for HU, which usually uses the sparsity of abundances and the correlation between the pixels to alleviate the non-convex problem. However, the commonly used L 1 / 2 sparse constraint will introduce an additional local minima because of the non-convexity, and the correlation between the pixels is not fully utilized because of the separation of the spatial and structural information. To overcome these limitations, a novel bilateral filter regularized L 2 sparse NMF is proposed for HU. Firstly, the L 2 -norm is utilized in order to improve the sparsity of the abundance matrix. Secondly, a bilateral filter regularizer is adopted so as to explore both the spatial information and the manifold structure of the abundance maps. In addition, NeNMF is used to solve the object function in order to improve the convergence rate. The results of the simulated and real data experiments have demonstrated the advantage of the proposed method

    Performance Study of Origami Crash Tubes Based on Energy Dissipation History

    No full text
    Thin-walled tubes are widely used as energy-absorbing components in traffic vehicles, which can absorb part of the energy in time by using the plastic deformation of the components during collision so as to reduce the damage of the vehicle body and improve the overall safety and reliability of traffic vehicles. The prefolded design of thin-walled tube components can guide it to achieve the ideal energy dissipation performance according to the preset damage path, so the related research based on origami tubes has attracted a lot of attention. Since the geometry of the origami tubes is controlled by many parameters and stress and deformation is a complex nonlinear damage process, most of the previous studies adopted the method of case analysis to carry out numerical simulation and experimental verification of the relevant influence parameters. This paper makes a new exploration of this kind of problem and focuses on solving the related technical problems in three aspects: 1. The automatic model modeling and 3D display based on parameters are proposed; 2. System integration using Python programming to automatically generate the data files of ABAQUS for finite element simulation was realized, and we sorted the finite element analysis results into an artificial intelligence analysis data set; 3. Clustering analysis of the energy consumption history of the data set is carried out using a machine learning algorithm, and the key design parameters that affect the energy consumption history are studied in depth. The sensitivity of the energy absorption performance of the origami tubes with multi-morphology patterns to the crease spacing is studied, and it is shown that the concave–convex crease spacing distribution with a distance larger than 18 mm could be used to activate specific crushing modes. In the optimal case, its initial peak force is reduced by 66.6% compared to uniformly spaced creases, while the average crushing force is essentially the same. Furthermore, this paper finds a new path to optimizing the design of parameters for origami tubes including a multi-morphology origami pattern from the perspective of energy dissipation

    The generation of glioma organoids and the comparison of two culture methods

    No full text
    Abstract Background The intra‐ and inter‐tumoral heterogeneity of gliomas and the complex tumor microenvironment make accurate treatment of gliomas challenging. At present, research on gliomas mainly relies on cell lines, stem cell tumor spheres, and xenotransplantation models. The similarity between traditional tumor models and patients with glioma is very low. Aims In this study, we aimed to address the limitations of traditional tumor models by generating patient‐derived glioma organoids using two methods that summarized the cell diversity, histological features, gene expression, and mutant profiles of their respective parent tumors and assess the feasibility of organoids for personalized treatment. Materials and Methods We compared the organoids generated using two methods through growth analysis, immunohistological analysis, genetic testing, and the establishment of xenograft models. Results Both types of organoids exhibited rapid infiltration when transplanted into the brains of adult immunodeficient mice. However, organoids formed using the microtumor method demonstrated more similar cellular characteristics and tissue structures to the parent tumors. Furthermore, the microtumor method allowed for faster culture times and more convenient operational procedures compared to the Matrigel method. Discussion Patient‐derived glioma organoids, especially those generated through the microtumor method, present a promising avenue for personalized treatment strategies. Their capacity to faithfully mimic the cellular and molecular characteristics of gliomas provides a valuable platform for elucidating tumor biology and evaluating therapeutic modalities. Conclusion The success rates of the Matrigel and microtumor methods were 45.5% and 60.5%, respectively. The microtumor method had a higher success rate, shorter establishment time, more convenient passage and cryopreservation methods, better simulation of the cellular and histological characteristics of the parent tumor, and a high genetic guarantee
    corecore