9 research outputs found

    Long-lived magmatic evolution and mineralization resulted in formation of the giant Cuonadong Sn-W-Be polymetallic deposit, southern Tibet

    Get PDF
    The Cuonadong Sn-W-Be polymetallic deposit is the first Cenozoic leucogranite-related rare-metal deposit with giant metallogenic potential in the Himalayan orogen. However, controlling factors for the supernormal enrichment of beryllium, tin and tungsten in this deposit remain vague. In this study, we carried out systematic geochronological, whole-rock geochemical, and Sr-Nd isotopic analysis for the Cuonadong leucogranites, as well as detailed ore-forming geochronological analysis. The monazite U-Th-Pb, cassiterite U-Pb and muscovite Ar-Ar dating results, together with previously reported geochronological data, indicate that the major Cuonadong leucogranites (including, from old to young, weakly-oriented two-mica, two-mica granite and muscovite) were formed during ∼21-15 Ma, whereas the Sn-W-Be mineralization mainly occurred at ∼18-14 Ma. The Cuonadong leucogranites show strong peraluminous (A/CNK=1.09-1.22) features, and have high SiO2 (71.62-75.97 wt.%) and Al2O3 (14.04-16.09 wt.%) and low MgO (0.07-0.33 wt.%), MnO (0.01-0.15 wt.%) and total Fe2O3 (0.36-1.01 wt.%) contents, and are enriched in large ion lithophile elements (e.g., Rb, U, K, and Pb). These geochemical features together with enriched Sr-Nd isotopes (εNd(t) = -15.7 to -11.7; (87Sr/86Sr)i=0.71957-0.76313) indicate that the Cuonadong leucogranites belong to S-type granite and were derived from muscovite-induced dehydration melting of metapelites of the Higher Himalayan Crystalline Sequence. Perceptible linear variations of some major elements (e.g., Na2O, K2O, MnO, Fe2O3T, TiO2 and A/CNK) with increasing Rb/Sr ratios suggest these leucogranites experienced different degrees of evolution. Quantitative simulation calculations based on the whole-rock Rb, Sr, and Ba contents imply that the Cuonadong leucogranites experienced increasingly-strong fractional crystallization of plagioclase, K-feldspar and biotite from the weakly-oriented two-mica granite to two-mica granite and muscovite granite. Importantly, intense fractional crystallization leaded to notable enrichment of Sn, W and Be, although these elements are not obviously high in the relatively primitive magma for the Cuonadong leucogranites. Significantly, evident REE tetrad effects and deviation of twin-element pair ratios (K/Rb, K/Ba, Zr/Hf, Nb/Ta, and Y/Ho) from the chondritic values demonstrate that intense interaction between melts and F-rich aqueous fluids occurred during magmatic evolution. This implies that the Cuonadong leucogranites were derived from a volatile-rich magmatic system. The abundant volatiles probably remarkably facilitated and extended the fractional crystallization though lowering the solidus and viscosity of the magma. Thus, we propose that long-lived crystal fractionation (∼21-15 Ma) and mineralization (∼18-14 Ma) collectively leaded to supernormal enrichment of Sn, W, and Be in the Cuonadong Sn-W-Be polymetallic deposit. In contrast, the enrichment of Sn, W, and Be during the partial melting was insignificant.publishedVersio

    siAKR1C3@PPA complex nucleic acid nanoparticles inhibit castration-resistant prostate cancer in vitro

    Get PDF
    IntroductionAKR1C3, as a crucial androgenic enzyme, implicates the androgen biosynthesis and promoting prostate cancer cell growth in vitro. This study provides a new gene therapy strategy for targeting AKR1C3 to treat castration-resistant prostate cancer.MethodssiAKR1C3@PPA is assembled from PEG3500, PAMAM, Aptamer-PSMA, and siRNA for AKR1C3. We analyzed the relationship between AKR1C3 expression and the survival rate of prostate cancer patients based on the GEPIA online database to perform disease-free survival, and found that AKR1C3 may be an important factor leading to poor prognosis in prostate cancer. Considering AKR1C3 as a therapeutic target for castration-resistant prostate cancer, we constructed a complex nucleic acid nanoparticle, siAKR1C3@PPA to investigate the inhibitory effect on castration-resistant prostate cancer.ResultsAptamer-PSMA acts as a target to guide siAKR1C3@PPA into PSMA-positive prostate cancer cells and specifically down regulate AKR1C3. Cyclin D1 was decreased as a result of siAKR1C3@PPA treatment. Changes in Cyclin D1 were consistent with decreased expression of AKR1C3 in LNCaP-AKR1C3 cells and 22RV1 cells. Furthermore, in the LNCaP-AKR1C3 group, 1070 proteins were upregulated and 1015 proteins were downregulated compared to the LNCaP group according to quantitative 4D label-free proteomics. We found 42 proteins involved in cell cycle regulation. In a validated experiment, we demonstrated that PCNP and CINP were up-regulated, and TERF2 and TP53 were down-regulated by western blotting.ConclusionWe concluded that siAKR1C3@PPA may arrest the cell cycle and affect cell proliferation

    Antibacterial hydrogel microparticles with drug loading for wound healing

    No full text
    Wound healing and regeneration are critical in medical care and pose a huge challenge for healthcare systems. It has great significance to develop functional materials for promoting wound repair. Herein, we presented novel antibacterial hydrogel microparticles with drug loading to treat the wound. The chitosan (CS) droplets were generated from a microfluidic electrospray system and solidified by sodium hydroxide solution. With further drying and drug uploading process, the drug-loaded CS microparticles (CSMPs) were achieved. The CSMPs exhibited excellent biocompatibility and antibacterial property, and displayed excellent capability in promoting wound healing in multiple stages. Hence, it is expected that the presented CSMPs can serve as multifunctional dressings for wound healing applications

    Overexpression of Aquaporin 1 on cysts of patients with polycystic liver disease

    No full text
    Background and objective: Polycystic liver disease (PCLD) represents a group of genetic disorders that include autosomal dominant polycystic kidney disease (ADPKD) and isolated polycystic liver disease (iPCLD). There is currently no definitive treatment except for liver transplantation. The aim of this study was to assess the expression level of aquaporin 1 (AQP1) on the PCLD cysts with different sizes and provide the potential therapeutic target. Methods: We collected 3 normal bile ducts, and recruited 8 patients with simple liver cyst disease, 24 patients with ADPKD, and 17 patients with iPCLD. AQP1 expression in different types of cyst walls and in normal bile ducts was detected using real time quantitative PCR, western blot and immunofluorescence staining. We also compared AQP1 expression levels in cysts of different sizes. Besides, ionic concentrations, pH and osmolality of cyst fluid were analyzed. Results: The results showed that AQP1 expression in PCLD cysts was significantly higher than that in simple liver cysts and the normal bile ducts. In addition, a comparable increasing trend was found in cysts of smaller sizes to cysts of larger sizes. pH values, the sodium and chloride concentrations were higher in cyst fluid than that in the serum. Conclusions: AQP1 was overexpressed in cystic cholangiocytes. A tendency of increased AQP1 protein expression in correlation with the cyst size was also found. These observations offered a direction into the molecular mechanisms of cyst expansion and maybe provide new treatment strategies to reduce fluid secretion into liver cysts

    Hyperon Polarization along the Beam Direction Relative to the Second and Third Harmonic Event Planes in Isobar Collisions at <math display="inline"><mrow><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>200</mn><mtext> </mtext><mtext> </mtext><mi>GeV</mi></mrow></math>

    No full text
    The polarization of Λ and Λ¯ hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sNN=200  GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pT dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagrees with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pT dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.The polarization of Λ\Lambda and Λˉ\bar{\Lambda} hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sNN\sqrt{s_{NN}} = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pTp_T dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pTp_T dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy
    corecore