54 research outputs found

    Manipulating Smith-Purcell Emission with Babinet Metasurfaces

    Get PDF
    Swift electrons moving closely parallel to a periodic grating produce far-field radiation of light, which is known as the Smith-Purcell effect. In this letter, we demonstrate that designer Babinet metasurfaces composed of C-aperture resonators offer a powerful control over the polarization state of the Smith-Purcell emission, which can hardly be achieved via traditional gratings. By coupling the intrinsically nonradiative energy bound at the source current sheet to the out-of-plane electric dipole and in-plane magnetic dipole of the C-aperture resonator, we are able to excite cross-polarized light thanks to the bianisotropic nature of the metasurface. The polarization direction of the emitted light is aligned with the orientation of the C-aperture resonator. Furthermore, the efficiency of the Smith-Purcell emission from Babinet metasurfaces is significantly increased by 84%, in comparison with the case of conventional gratings. These findings not only open up a new way to manipulate the electron-beam-induced emission in the near-field region but also promise compact, tunable, and efficient light sources and particle detectors.United States. Office of Naval Research (N00014-16-1-2049

    Valley-Hall photonic topological insulators with dual-band kink states

    Full text link
    Extensive researches have revealed that valley, a binary degree of freedom (DOF), can be an excellent candidate of information carrier. Recently, valley DOF has been introduced into photonic systems, and several valley-Hall photonic topological insulators (PTIs) have been experimentally demonstrated. However, in the previous valley-Hall PTIs, topological kink states only work at a single frequency band, which limits potential applications in multiband waveguides, filters, communications, and so on. To overcome this challenge, here we experimentally demonstrate a valley-Hall PTI, where the topological kink states exist at two separated frequency bands, in a microwave substrate-integrated circuitry. Both the simulated and experimental results demonstrate the dual-band valley-Hall topological kink states are robust against the sharp bends of the internal domain wall with negligible inter-valley scattering. Our work may pave the way for multi-channel substrate-integrated photonic devices with high efficiency and high capacity for information communications and processing

    Original Article Synergy between IL-6 and TGF-β signaling promotes FOXP3 degradation

    Get PDF
    Abstract: The forkhead family transcription factor FOXP3 is critical for the differentiation and function of CD4 + CD25 + regulatory T cells (Treg). How FOXP3 protein level is negatively regulated under the inflammatory microenvironment is largely unknown. Here we report that the combination of transforming growth factor-beta (TGF-β) and IL-6 treatment (IL-6/TGF-β) can synergistically downregulate FOXP3 at the posttranslational level by promoting FOXP3 protein degradation. In our FOXP3 overexpression model, we found that IL-6/TGF-β treatment upregulated IL-6R expression but did not affect the stability of FOXP3 mRNA. Moreover, we found that the proteasome inhibitor MG132 could inhibit IL-6/TGF-β-mediated downregulation of FOXP3 protein, which reveals a potential pathway for modulating Treg activity by preventing FOXP3 degradation during inflammation

    Parity Splitting and Polarized-Illumination Selection of Plasmonic Higher-Order Topological States

    Full text link
    Topological states, originated from interactions between internal degree of freedoms (like spin and orbital) in each site and crystalline symmetries, offer a new paradigm to manipulate electrons and classical waves. The accessibility of spin degree of freedom has motivated much attention on spin-related topological physics. However, intriguing topological physics related to atomic-orbital parity, another binary degree of freedom, have not been exploited since accessing approaches on atomic orbitals are not well developed. Here, we theoretically discover spectral splitting of atomic-orbital-parity-dependent second-order topological states on a designer-plasmonic Kagome metasurface, and experimentally demonstrate it by exploiting the easy controllability of metaatoms. Unlike previous demonstrations on Hermitian higher-order topological insulators, radiative non-Hermicity of the metasurface enables far-field access into metaatomic-orbital-parity-dependent topological states with polarized illuminations. The atomic-orbital parity degree of freedom may generate more intriguing topological physics by interacting with different crystalline symmetries, and promise applications in polarization-multiplexing topological lasing and quantum emitters.Comment: 19 pages, 4 figure

    Reconfigurable Meta-Radiator Based on Flexible Mechanically Controlled Current Distribution in Three-dimensional Space

    Full text link
    In this paper, we provide an experimental proof-of-concept of this dynamic 3D current manipulation through a 3D-printed reconfigurable meta-radiator with periodically slotted current elements. By utilizing the working frequency and the mechanical configuration comprehensively, the radiation pattern can be switched among 12 states. Inspired by maximum likelihood method in digital communications, a robustness-analysis method is proposed to evaluate the potential error ratio between ideal cases and practice. Our work provides a previously unidentified model for next-generation information distribution and terahertz-infrared wireless communications

    A meta-substrate to enhance the bandwidth of metamaterials

    Get PDF
    We propose the concept of a meta-substrate to broaden the bandwidth of left-handed metamaterials. The meta-substrate, which behaves like an inhomogeneous magnetic substrate, is composed of another kind of magnetic metamaterials like metallic closed rings. When conventional metamaterial rings are printed on this kind of meta-substrate in a proper way, the interaction of the metamaterials units can be greatly enhanced, yielding an increased bandwidth of negative permeability. An equivalent circuit analytical model is used to quantitatively characterize this phenomenon. Both numerical and experimental demonstrations are carried out, showing good agreement with theoretical predictions
    corecore