40 research outputs found

    1S0 Proton and Neutron Superfluidity in beta-stable Neutron Star Matter

    Get PDF
    We investigate the effect of a microscopic three-body force on the proton and neutron superfluidity in the 1S0^1S_0 channel in β\beta-stable neutron star matter. It is found that the three-body force has only a small effect on the neutron 1S0^1S_0 pairing gap, but it suppresses strongly the proton 1S0^1S_0 superfluidity in β\beta-stable neutron star matter.Comment: 12 pages, 2 figure

    Effect of the momentum dependence of nuclear symmetry potential on the transverse and elliptic flows

    Full text link
    In the framework of the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model, effect of the momentum dependence of nuclear symmetry potential on nuclear transverse and elliptic flows in the neutron-rich reaction 132^{132}Sn+124^{124}Sn at a beam energy of 400 MeV/nucleon is studied. We find that the momentum dependence of nuclear symmetry potential affects the rapidity distribution of the free neutron to proton ratio, the neutron and the proton transverse flows as a function of rapidity. The momentum dependence of nuclear symmetry potential affects the neutron-proton differential transverse flow more evidently than the difference of neutron and proton transverse flows as well as the difference of proton and neutron elliptic flows. It is thus better to probe the symmetry energy by using the difference of neutron and proton flows since the momentum dependence of nuclear symmetry potential is still an open question. And it is better to probe the momentum dependence of nuclear symmetry potential by using the neutron-proton differential transverse flow and the rapidity distribution of the free neutron to proton ratio.Comment: 6 pages, 6 figures, to be published by EPJ

    Numerical Investigation on the Ground Response of a Gob-Side Entry in an Extra-Thick Coal Seam

    No full text
    This study was aimed at the large deformation phenomenon of rock mass surrounding the gob-side entry driven in a 20 m extra-thick coal seam. Taking tailgate 8211 as the engineering background, a numerical investigation was employed to analyze the deformation law of the gob-side entry. The study results are as follows. (1) Because the immediate roof was composed of weak coal mass with a thickness of 17 m, the roof coal mass was vulnerable to fail with the effect of overlying strata pressure; thus, a visual subsidence of roof coal mass with a maximum convergence of 800 mm was observed in the field. (2) The bearing capacity of the coal pillar was significantly less than that of the panel rib, resulting in the pillar failing more easily under the ground pressure and then generating large-scale squeezing deformation. (3) The roof and panel rib were in a state of shear failure with a failure depth of about 5 m. The coal pillar was entirely in a state of plastic failure. (4) A support scheme including an asymmetric anchor beam truss, roof angle anchor cable, and anchor cable combination structure was proposed. The field work confirmed that this support scheme could efficiently control the deformation and failure of the rock mass surrounding the gob-side entry. This study provides the theoretical basis and technical support for the control of rocks surrounding the gob-side entry in similar conditions
    corecore