10,531 research outputs found
Design of Fixed-Point Processing Based LDPC Codes Using EXIT Charts
Logarithmic representation of the variables processed by iterative decoding algorithms of Low-Density Parity-Check (LDPC) codes are attractive, since the resultant reduced dynamic range of its Logarithmic Likelihood Ratios (LLRs) allows a Fixed Point (FP) operand-representation to be used. This FP representation has a lower computational complexity than a floating point representation, allowing the decoder's hardware to have a low energy consumption, which depends on the Operand-Width (OW) of the LLRs. However, if the OW is too low, then an inevitable performance degradation will be introduced. Therefore it is desirable to determine the minimum OW that does not impose a significant performance degradation. Previous efforts have advocated different OWs based on results obtained using time-consuming Bit Error Ratio (BER) simulations. However, these simulations are extremely time consuming, owing to the requirement of considering a range of channel Signal-to-Noise Ratios (SNRs). Therefore, in this paper, we propose the employment of EXtrinsic Information Transfer (EXIT) charts to overcome this drawback. Furthermore, EXIT charts analysis has the additional benefit of offering insights into the specific causes of the performance degradations encountered. Finally, a FP scheme having an overall OW = 6 is proposed for the implementation of the Min-Sum Algorithm (MSA)
Ab-initio density functional studies of stepped TaC surfaces
We report on density functional total energy calculations of the step
formation and interaction energies for vicinal TaC(001) surfaces. Our
calculations show that double and triple-height steps are favored over
single-height steps for a given vicinal orientation, which is in agreement with
recent experimental observations. We provide a description of steps in terms of
atomic displacements and charge localization and predict an experimentally
observable rumpled structure of the step-edges, where the Ta atoms undergo
larger displacements compared to the C atoms.Comment: 4 pages, 4 figure
Lambda polarization in pp -> p\Lambda K^+ \pi^+\pi^-\pi^+\pi^-
We show that there is a correlation between the invariant mass of the
produced \Lambda K^+, \Lambda K^+\pi^+\pi^- or \Lambda K^+ \pi^+\pi^-\pi^+\pi^-
system in the exclusive reaction pp\to p\Lambda K^+\pi^+\pi^-\pi^+\pi^- and the
longitudinal or transverse momentum of . Together with the
longitudinal and transverse momentum dependence of Lambda polarization observed
in inclusive reactions, such a correlation implies a dependence of Lambda
polarization on these invariant masses. The qualitative features of this
dependence are consistent with the recent observation by E766 collaboration at
BNL. A quantitative estimation has been made using an event generator for
collisions. A detailed comparison with the data is made.Comment: 10 pages with 3 figures, submitted to J. Phys.
Spin Polarized Asymmetric Nuclear Matter and Neutron Star Matter Within the Lowest Order Constrained Variational Method
In this paper, we calculate properties of the spin polarized asymmetrical
nuclear matter and neutron star matter, using the lowest order constrained
variational (LOCV) method with the , , and
potentials. According to our results, the spontaneous phase transition to a
ferromagnetic state in the asymmetrical nuclear matter as well as neutron star
matter do not occur.Comment: 21 pages, 11 figure
Microscopic three-body forces and kaon condensation in cold neutrino-trapped matter
We investigate the composition and the equation of state of the kaon
condensed phase in neutrino-free and neutrino-trapped star matter within the
framework of the Brueckner-Hartree-Fock approach with three-body forces. We
find that neutrino trapping shifts the onset density of kaon condensation to a
larger baryon density, and reduces considerably the kaon abundance. As a
consequence, when kaons are allowed, the equation of state of neutrino-trapped
star matter becomes stiffer than the one of neutrino free matter. The effects
of different three-body forces are compared and discussed. Neutrino trapping
turns out to weaken the role played by the symmetry energy in determining the
composition of stellar matter, and thus reduces the difference between the
results obtained by using different three-body forces.Comment: 9 pages, 7 figures, accepted in Phys. Rev.
Hot Nuclear Matter Equation of State with a Three-body Force
The finite temperature Brueckner-Hartree-Fock approach is extended by
introducing a microscopic three-body force. In the framework of the extended
model, the equation of state of hot asymmetric nuclear matter and its isospin
dependence have been investigated. The critical temperature of liquid-gas phase
transition for symmetric nuclear matter has been calculated and compared with
other predictions. It turns out that the three-body force gives a repulsive
contribution to the equation of state which is stronger at higher density and
as a consequence reduces the critical temperature of liquid-gas phase
transition. The calculated energy per nucleon of hot asymmetric nuclear matter
is shown to satisfy a simple quadratic dependence on asymmetric parameter
as in the zero-temperature case. The symmetry energy and its density
dependence have been obtained and discussed. Our results show that the
three-body force affects strongly the high-density behavior of the symmetry
energy and makes the symmetry energy more sensitive to the variation of
temperature. The temperature dependence and the isospin dependence of other
physical quantities, such as the proton and neutron single particle potentials
and effective masses are also studied. Due to the additional repulsion produced
by the three-body force contribution, the proton and neutron single particle
potentials are correspondingly enhanced as similar to the zero-temperature
case.Comment: 16 pages, 8 figure
A method to find unstable periodic orbits for the diamagnetic Kepler Problem
A method to determine the admissibility of symbolic sequences and to find the
unstable periodic orbits corresponding to allowed symbolic sequences for the
diamagnetic Kepler problem is proposed by using the ordering of stable and
unstable manifolds. By investigating the unstable periodic orbits up to length
6, a one to one correspondence between the unstable periodic orbits and their
corresponding symbolic sequences is shown under the system symmetry
decomposition
- …