9,024 research outputs found

    Production mechanisms and single-spin asymmetry for kaons in high energy hadron-hadron collisions

    Full text link
    Direct consequences on kaon production of the picture proposed in a recent Letter and subsequent publications are discussed. Further evidence supporting the proposed picture is obtained. Comparison with the data for the inclusive cross sections in unpolarized reactions is made. Quantitative results for the left-right asymmetry in single-spin processes are presented.Comment: 10 pages, 2 Postscript figure

    Polarized Neutron Matter: A Lowest Order Constrained Variational Approach

    Full text link
    In this paper, we calculate some of the polarized neutron matter properties, using the lowest order constrained variational method with the AV18AV_{18} potential and employing a microscopic point of view. A comparison is also made between our results and those of other many-body techniques.Comment: 23 pages, 8 figure

    Correlation effects in the ground state charge density of Mott-insulating NiO: a comparison of ab-initio calculations and high-energy electron diffraction measurements

    Full text link
    Accurate high-energy electron diffraction measurements of structure factors of NiO have been carried out to investigate how strong correlations in the Ni 3d shell affect electron charge density in the interior area of nickel ions and whether the new ab-initio approaches to the electronic structure of strongly correlated metal oxides are in accord with experimental observations. The generalized gradient approximation (GGA) and the local spin density approximation corrected by the Hubbard U term (LSDA+U) are found to provide the closest match to experimental measurements. The comparison of calculated and observed electron charge densities shows that correlations in the Ni 3d shell suppress covalent bonding between the oxygen and nickel sublattices.Comment: 6 pages, LaTeX and 5 figures in the postscript forma

    Multivariate risks and depth-trimmed regions

    Get PDF
    We describe a general framework for measuring risks, where the risk measure takes values in an abstract cone. It is shown that this approach naturally includes the classical risk measures and set-valued risk measures and yields a natural definition of vector-valued risk measures. Several main constructions of risk measures are described in this abstract axiomatic framework. It is shown that the concept of depth-trimmed (or central) regions from the multivariate statistics is closely related to the definition of risk measures. In particular, the halfspace trimming corresponds to the Value-at-Risk, while the zonoid trimming yields the expected shortfall. In the abstract framework, it is shown how to establish a both-ways correspondence between risk measures and depth-trimmed regions. It is also demonstrated how the lattice structure of the space of risk values influences this relationship.Comment: 26 pages. Substantially revised version with a number of new results adde

    A novel role for 14-3-3ĂŹĆ’ in regulating epithelial cell polarity

    Get PDF
    The loss of epithelial polarity is thought to play an important role during mammary tumor progression. Using a unique transgenic mouse model of ErbB2-induced mammary tumorigenesis, we demonstrated previously that amplification of ErbB2 is frequently accompanied by loss of the 14-3-3σ gene. Here, we demonstrate that ectopic expression of 14-3-3σ results in restoration of epithelial polarity in ErbB2-transformed mammary tumor cells. We further demonstrate that targeted deletion of 14-3-3σ within primary mammary epithelial cells increases their proliferative capacity and adversely affects their ability to form polarized structures. Finally, we show that 14-3-3σ can specifically form complexes with Par3, a protein that is essential for the maintenance of a polarized epithelial state. Taken together, these observations suggest that 14-3-3σ plays a critical role in retaining epithelial polarity. © 2010 by Cold Spring Harbor Laboratory Press

    Magnetic-field-induced superconductivity in layered organic molecular crystals with localized magnetic moments

    Full text link
    The synthetic organic compound lambda-(BETS)2FeCl4 undergoes successive transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe(3+) magnetic ions in these phase transitions. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. This suggests that the field-induced superconducting state is the same as the zero-field superconducting state which occurs under pressure or when the Fe(3+) ions are replaced by non-magnetic Ga(3+) ions. We show how He can be extracted from the observed splitting of the Shubnikov-de Haas frequencies. Furthermore, we use this method of extracting He to predict the field range for field-induced superconductivity in other materials.Comment: 5 page

    Fermiology and superconductivity studies on the non-tetrachalcogenafulvalene structured organic superconductor beta-(BDA-TTP)_2SbF_6

    Full text link
    The quantum oscillatory effect and superconductivity in a non-tetrachalcogenafulvalene (TCF) structure based organic superconductor beta-(BDA-TTP)_2SbF_6 are studied. Here the Shubnikov-de Haas effect (SdH) and angular dependent magnetoresistance oscillations (AMRO) are observed. The oscillation frequency associated with a cylindrical Fermi surface is found to be about 4050 tesla, which is also verified by the tunnel diode oscillator (TDO) measurement. The upper critical field Hc2 measurement in a tilted magnetic field and the TDO measurement in the mixed state reveal a highly anisotropic superconducting nature in this material. We compared physical properties of beta-(BDA-TTP)_2SbF_6 with typical TCF structure based quasi two-dimensional organic conductors. A notable feature of beta-(BDA-TTP)_2SbF_6 superconductor is a large value of effective cyclotron mass m_c^*=12.4+/1.1 m_e, which is the largest yet found in an organic superconductor. A possible origin of the enhanced effective mass and its relation to the superconductivity are briefly discussed.Comment: 8 pages, 10 figure
    • …
    corecore