38 research outputs found

    MicroAST: Towards Super-Fast Ultra-Resolution Arbitrary Style Transfer

    Full text link
    Arbitrary style transfer (AST) transfers arbitrary artistic styles onto content images. Despite the recent rapid progress, existing AST methods are either incapable or too slow to run at ultra-resolutions (e.g., 4K) with limited resources, which heavily hinders their further applications. In this paper, we tackle this dilemma by learning a straightforward and lightweight model, dubbed MicroAST. The key insight is to completely abandon the use of cumbersome pre-trained Deep Convolutional Neural Networks (e.g., VGG) at inference. Instead, we design two micro encoders (content and style encoders) and one micro decoder for style transfer. The content encoder aims at extracting the main structure of the content image. The style encoder, coupled with a modulator, encodes the style image into learnable dual-modulation signals that modulate both intermediate features and convolutional filters of the decoder, thus injecting more sophisticated and flexible style signals to guide the stylizations. In addition, to boost the ability of the style encoder to extract more distinct and representative style signals, we also introduce a new style signal contrastive loss in our model. Compared to the state of the art, our MicroAST not only produces visually superior results but also is 5-73 times smaller and 6-18 times faster, for the first time enabling super-fast (about 0.5 seconds) AST at 4K ultra-resolutions. Code is available at https://github.com/EndyWon/MicroAST.Comment: Accepted by AAAI 202

    Generative Image Inpainting with Segmentation Confusion Adversarial Training and Contrastive Learning

    Full text link
    This paper presents a new adversarial training framework for image inpainting with segmentation confusion adversarial training (SCAT) and contrastive learning. SCAT plays an adversarial game between an inpainting generator and a segmentation network, which provides pixel-level local training signals and can adapt to images with free-form holes. By combining SCAT with standard global adversarial training, the new adversarial training framework exhibits the following three advantages simultaneously: (1) the global consistency of the repaired image, (2) the local fine texture details of the repaired image, and (3) the flexibility of handling images with free-form holes. Moreover, we propose the textural and semantic contrastive learning losses to stabilize and improve our inpainting model's training by exploiting the feature representation space of the discriminator, in which the inpainting images are pulled closer to the ground truth images but pushed farther from the corrupted images. The proposed contrastive losses better guide the repaired images to move from the corrupted image data points to the real image data points in the feature representation space, resulting in more realistic completed images. We conduct extensive experiments on two benchmark datasets, demonstrating our model's effectiveness and superiority both qualitatively and quantitatively.Comment: Accepted to AAAI2023, Ora

    Dysbiosis of the Salivary Microbiome Is Associated With Non-smoking Female Lung Cancer and Correlated With Immunocytochemistry Markers

    Get PDF
    Background: Association between oral bacteria and increased risk of lung cancer have been reported in several previous studies, however, the potential association between salivary microbiome and lung cancer in non-smoking women have not been evaluated. There is also no report on the relationship between immunocytochemistry markers and salivary microbiota.Method: In this study, we assessed the salivary microbiome of 75 non-smoking female lung cancer patients and 172 matched healthy individuals using 16S rRNA gene amplicon sequencing. We also calculated the Spearman's rank correlation coefficient between salivary microbiota and three immunohistochemical markers (TTF-1, Napsin A and CK7).Result: We analyzed the salivary microbiota of 247 subjects and found that non-smoking female lung cancer patients exhibited oral microbial dysbiosis. There was significantly lower microbial diversity and richness in lung cancer patients when compared to the control group (Shannon index, P < 0.01; Ace index, P < 0.0001). Based on the analysis of similarities, the composition of the microbiota in lung cancer patients also differed from that of the control group (r = 0.454, P < 0.001, unweighted UniFrac; r = 0.113, P < 0.01, weighted UniFrac). The bacterial genera Sphingomonas (P < 0.05) and Blastomonas (P < 0.0001) were relatively higher in non-smoking female lung cancer patients, whereas Acinetobacter (P < 0.001) and Streptococcus (P < 0.01) were higher in controls. Based on Spearman's correlation analysis, a significantly positive correlation can be observed between CK7 and Enterobacteriaceae (r = 0.223, P < 0.05). At the same time, Napsin A was positively associated with genera Blastomonas (r = 0.251, P < 0.05). TTF-1 exhibited a significantly positive correlation with Enterobacteriaceae (r = 0.262, P < 0.05). Functional analysis from inferred metagenomes indicated that oral microbiome in non-smoking female lung cancer patients were related to cancer pathways, p53 signaling pathway, apoptosis and tuberculosis.Conclusions: The study identified distinct salivary microbiome profiles in non-smoking female lung cancer patients, revealed potential correlations between salivary microbiome and immunocytochemistry markers used in clinical diagnostics, and provided proof that salivary microbiota can be an informative source for discovering non-invasive lung cancer biomarkers

    Estimating the sensory-associated metabolites profiling of matcha based on PDO attributes as elucidated by NIRS and MS approaches

    No full text
    Matcha has been globally valued by consumers for its distinctive fragrance and flavor since ancient times. Currently, the protected designation of origin (PDO) certified matcha, characterized by unique sensory attributes, has garnered renewed interest from consumers and the industry. Given the challenges associated with assessing sensory perceptions, the origin of PDO-certified matcha samples from Guizhou was determined using NIRS and LC-MS platforms. Notably, the accuracy of our established attribute models, based on informative wavelengths selected by the CARS-PLS method, exceeds 0.9 for five sensory attributes, particularly the particle homogeneity attribute (with a validation correlation coefficient of 0.9668). Moreover, an LC-MS method was utilized to analyze non-target matcha metabolites to identify the primary flavor compounds associated with each flavor attribute and to pinpoint the key constituents responsible for variations in grade and flavor intensity. Additionally, high three-way intercorrelations between descriptive sensory attributes, metabolites, and the selected informative wavelengths were observed through network analysis, with correlation coefficients calculated to quantify these relationships. In this research, the integration of matcha chemical composition and sensory panel data was utilized to develop predictive models for assessing the flavor profile of matcha based on its chemical properties

    Anisotropic Electrene T'-Ca2P with Electron Gas Magnetic Coupling as Anode Material for Na/K Ion Batteries

    Full text link
    There is an urgently need for the high-performance rechargeable electrical storage devices as supplement or substitutions of lithium ion batteries due to the shortage of lithium in nature. Herein we propose a stable 2D electrene T'-Ca2P as anode material for Na/K ion batteries by first-principle calculations. Our calculated results show that T'-Ca2P monolayer is an antiferromagnetic semiconducting electrene with spin-polarized electron gas. It exhibits suitable adsorption for both Na and K atoms, and its anisotropic migration energy barriers are 0.050/0.101 eV and 0.037/0.091 eV in b/a direction, respectively. The theoretical capacities for Na and K are both 482 mAh/g, while the average working voltage platforms are 0.171-0.226 V and 0.013-0.267 V, respectively. All the results reveal that the T'-Ca2P monolayer has promised application prospects as anode materials for Na/K ion batteries

    DivSwapper: Towards Diversified Patch-based Arbitrary Style Transfer

    Full text link
    Gram-based and patch-based approaches are two important research lines of style transfer. Recent diversified Gram-based methods have been able to produce multiple and diverse stylized outputs for the same content and style images. However, as another widespread research interest, the diversity of patch-based methods remains challenging due to the stereotyped style swapping process based on nearest patch matching. To resolve this dilemma, in this paper, we dive into the crux of existing patch-based methods and propose a universal and efficient module, termed DivSwapper, for diversified patch-based arbitrary style transfer. The key insight is to use an essential intuition that neural patches with higher activation values could contribute more to diversity. Our DivSwapper is plug-and-play and can be easily integrated into existing patch-based and Gram-based methods to generate diverse results for arbitrary styles. We conduct theoretical analyses and extensive experiments to demonstrate the effectiveness of our method, and compared with state-of-the-art algorithms, it shows superiority in diversity, quality, and efficiency.Comment: Accepted by IJCAI 2022 (AI, Arts & Creativity Track
    corecore