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Background: Association between oral bacteria and increased risk of lung cancer have

been reported in several previous studies, however, the potential association between

salivary microbiome and lung cancer in non-smoking women have not been evaluated.

There is also no report on the relationship between immunocytochemistry markers and

salivary microbiota.

Method: In this study, we assessed the salivary microbiome of 75 non-smoking female

lung cancer patients and 172matched healthy individuals using 16S rRNA gene amplicon

sequencing. We also calculated the Spearman’s rank correlation coefficient between

salivary microbiota and three immunohistochemical markers (TTF-1, Napsin A and CK7).

Result: We analyzed the salivarymicrobiota of 247 subjects and found that non-smoking

female lung cancer patients exhibited oral microbial dysbiosis. There was significantly

lower microbial diversity and richness in lung cancer patients when compared to

the control group (Shannon index, P < 0.01; Ace index, P < 0.0001). Based on

the analysis of similarities, the composition of the microbiota in lung cancer patients

also differed from that of the control group (r = 0.454, P < 0.001, unweighted

UniFrac; r = 0.113, P < 0.01, weighted UniFrac). The bacterial genera Sphingomonas

(P < 0.05) and Blastomonas (P < 0.0001) were relatively higher in non-smoking

female lung cancer patients, whereas Acinetobacter (P < 0.001) and Streptococcus

(P < 0.01) were higher in controls. Based on Spearman’s correlation analysis, a

significantly positive correlation can be observed between CK7 and Enterobacteriaceae

(r = 0.223, P < 0.05). At the same time, Napsin A was positively associated with

genera Blastomonas (r = 0.251, P < 0.05). TTF-1 exhibited a significantly positive

correlation with Enterobacteriaceae (r = 0.262, P < 0.05). Functional analysis from
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inferred metagenomes indicated that oral microbiome in non-smoking female lung

cancer patients were related to cancer pathways, p53 signaling pathway, apoptosis and

tuberculosis.

Conclusions: The study identified distinct salivary microbiome profiles in non-smoking

female lung cancer patients, revealed potential correlations between salivary microbiome

and immunocytochemistry markers used in clinical diagnostics, and provided proof that

salivary microbiota can be an informative source for discovering non-invasive lung cancer

biomarkers.

Keywords: salivary microbiome, dysbiosis, biomarker, non-smoking female patient, lung cancer

INTRODUCTION

Lung cancer is considered the leading cause of cancer death
worldwide, accounting for over 300,000 deaths annually (1).
Although lung cancer is often recognized as a disease suffered by
smokers, global statistics estimate that 15% of male lung cancer
and 53% of female lung cancer are not attributable to tobacco use
(2, 3). Non-smoking lung cancer patients are often considered
a different population (4). Non-small cell lung cancer (NSCLC)
in non-smokers is clinically characterized by a higher occurrence
of adenocarcinoma and an increased incidence in females, when
compared to NSCLC in smokers (5).

Recently, the study of oral microbiome has developed from
oral diseases to systemic diseases, even systemic cancers (6–12). It
has been proposed that oral microbiome play a causal role in the
dynamic equilibrium with the immune-inflammatory response
of the host (13, 14). The human respiratory tract is the primary
and consistent entry point for numerous microorganisms,
primarily airborne, but also those transferred through saliva. Oral
bacterial communities may originate from the oropharynx and
tracheobronchial or from the environment through inhalation,
and probably seed the lungs with oral bacteria (15, 16). The
association extends into the systemic circulation and holds the
answer for understanding disease and developing non-invasive
approaches to health care (17–20). However, cigarette smoking
may lead to oral microbiome imbalance, thereby causing
potential shifts in functional pathways, and having implications
for smoking-related diseases (21). Previous studies on oral
microbiome in lung cancer have not stratified clinical samples
based on the smoking status and fully evaluated confounding
factors such as smoking on the discovered bacterial biomarkers
(18). Furthermore, there has been no report on characterizing
oral microbiome in non-smoking female lung cancer patients.

It is considered that environmental factors and genetic
susceptibility may contribute to risk of lung cancer in non-
smokers (22, 23). The main goal of this paper is to place into
perspective different experimental and methodological views,
to better understand the effect of oral microbiota changes
on disease onset or during different disease stages. In this
pilot study, we performed a comprehensive comparison of
the salivary microbiota of non-smoking female lung cancer
patients and that of healthy control subjects, using 16S
rRNA gene sequencing. We characterized the variation in
salivary microbiome balance in non-smoking female lung

cancer patients and the dysbiosis of the salivary microbiome,
based on structure, composition, and function. We also
identified the relationship between salivary microbiota and
immunocytochemistry markers containing thyroid transcription
factor(TTF-1), Napsin A and cytokeratin(CK7), as well as the
specific microbial signatures of lung cancer (24, 25). The role
of oral microbiota composition is important to evaluate how
salivary microbial biomarkers at the community level could
improve assessment for individuals and populations at risk,
especially with respect to developing non-invasive diagnostic
tests.

METHODS

Study Design and Cohort Information
This study was conducted as per the recommendations of Human
Specimen Study guidelines of the Institutional Review Board
of the Affiliated Central Hospital of Qingdao University (IRB#
QCH16-1101-01). The study was designed based on the principle
of PRoBE design (prospective specimen collection before
outcome ascertainment and retrospective blinded evaluation)
(26). The critical feature of PRoBE design involves prospective
clinical sample collection from a study cohort relevant to
the clinical application, prior to ascertaining the outcome.
Biomarker tests intended for FDA approval and clinical use
must incorporate PRoBE principles at an early stage, as these
principles eliminate potential biases commonly seen at the
discovery stage (26).

Newly diagnosed and untreated non-smoking female lung
cancer patients and matched healthy controls were recruited
for this study from the Affiliated Central Hospital of Qingdao
University. The inclusion criteria for the patients required that
they be female and have confirmed diagnosis of non-small-cell
lung cancer. Exclusion criteria included a history of smoking or
drinking, evidence of locally advanced lung cancer, metastatic
lung cancer, chemotherapy, or radiation therapy prior to saliva
collection and diagnosis of other malignancies within 5 years
from the time of saliva collection. Healthy control individuals
were matched based on age, gender, smoking and drinking status.

Written informed consents and questionnaire data sheets
were obtained from all participants who agreed to act as sample
donors, in compliance with national legislation and the Code
of Ethical Principles for Medical Research Involving Human
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Subjects of the World Medical Association (Declaration of
Helsinki). All methods and experimental protocols in this study
were performed in accordance with appropriate guidelines and
standard operating procedures.

Sample Collection, Process and Storage
All subjects were requested to refrain from drinking, eating and
using oral hygiene products for at least 2 h prior to sample
collection. Unstimulated whole saliva was consistently collected,
processed, and stored according to previously established
protocol (27, 28). Briefly, 5∼10mL of unstimulated whole
saliva was collected in a 50mL sterile tube from each subject
from 9 to 10 a.m. (the collection time was <30min and the
collection tubes were kept on ice after collection). Whole saliva
samples were then centrifuged at 2,600 × g for 15min at
4◦C. Following this, the supernatant was carefully removed
and the pellet was immediately frozen and stored at −80◦C
prior to assay. The immunocytochemistry analysis of the
resected tumors was performed using 5-µm thick, formalin-
fixed, paraffin-embedded tissue sections of each case, and a
BenchMark Autostainer with the EnVision detection system was
used to stain all slides (29, 30). Clinical characteristics of samples
and results of immunocytochemistry analysis are shown in
Table S1.

DNA Extraction and 16S rRNA Gene
Sequencing
The DNA was extracted using the UltraClean Microbial DNA
Isolation Kit (MO BIO Laboratories Inc, Carlsbad, California,
USA) as per the manufacturer’s instructions. The equivalent of
1 ul of each sample was then used for DNA quantification using
a NanoDrop 2000 Spectrophotometer (Thermo Scientific). The
hypervariable region V1-V2 of the 16S rRNA gene was amplified
to analyze the bacterial populations in the samples. 16S ribosomal
RNA (or 16S rRNA) is the component of the 30S small subunit
of a prokaryotic ribosome that binds to the Shine-Dalgarno
sequence. The gene coding for it is referred to as 16S rRNA gene
and it is used in reconstructing phylogenies, due to the slow rates
of evolution of this region of the gene (31, 32).

PCR was conducted using the bacterial universal primers

F27 (5
′

-AGAGTTTGATCMTGGCTCAG-3
′

) and R338 (5
′

-GCT
GCCTCCCGTAGGAGT-3

′

). A QIAquick PCR Purification Kit
(Qiagen, Barcelona, Spain) was used to initially purify the
amplicons, which were then quantified using a NanoDrop
2,000 Spectrophotometer (Thermo Scientific) and then pooled
in equal concentrations. Illumina HiSeq 2,500 next-generation
sequencer (Illumina Inc., San Diego, CA, USA) was then used
to sequence the pooled amplicons (2 nM), following standard
Illumina platform protocols. All sequencing data of this study
was then uploaded to the NCBI SRA database (accession number:
SRP145042). The SRA database webpage is https://www.ncbi.
nlm.nih.gov/sra/.

Taxonomy Quantification Using 16S rRNA
Gene Sequences and Statistical Methods
As described by Magoč and Salzberg (33), the raw FASTQ
files were first de-multiplexed, then quality-filtered using

Trimmomatic and merged using FLASH with the following
criteria: (i) All reads at any site receiving an average quality
score <20 over a 50-bp sliding window, were truncated;
(ii) The primers were exactly matched allowing 2 nucleotide
mismatching, and reads with ambiguous bases were removed.
(iii) Sequences whose overlaps were longer than 10 bp were
merged according to the overlapping sequence.

All sequence analyses were conducted in the Quantitative
Insights Into Microbial Ecology (QIIME, version 1.9.1) software
suite (34), according to the QIIME tutorial (http://qiime.org/).
Usearch61 was used with de novo models to remove chimeric
sequences (35). Sequences were then clustered against the 2013
Greengenes (13_8 release) ribosomal database (97% reference
data set). Sequences not matching any of the entries in this
reference were subsequently clustered into de novo operational
taxonomic units (OTUs) at 97% similarity with UCLUST. The
RDP classifier within QIIME and the Greengenes reference
data set were used to assign taxonomy to all OTUs (36).
Alpha diversity and rank abundance scripts within the QIIME
pipeline were used to calculate rarefaction and rank abundance
curves from OTU tables. Unweighted pair group method
with arithmetic mean (UPGMA) clustering (also known as
average linkage) on the distance matrix of OTU abundance
was used to perform hierarchical clustering based on the
population profiles of the most common and abundant taxa.
The QIIME package was then used to obtain a newick-formatted
tree.

The potential bacterial biomarkers were explored using
linear discriminant effect size (LEfSe)—an algorithm for high-
dimensional biomarker discovery that uses linear discriminant
analysis (LDA) to estimate the effect size of each taxon that
is differentially represented in cases and controls. In addition
to detecting significant features, LEfSe also ranks features
by effect size, and places features explaining most of the
biological difference at the top (37). The least number of
sequences present in any given sample from a sample category
were randomly selected prior to calculating community-wide
dissimilarity measures (alpha diversity and beta diversity), to
account for any bias caused by uneven sequencing depth. The
OTU table was then rarefied to a sequencing depth of 11,000
per sample for both diversity analyses. All principal coordinate
analyses (PCoA) were based on unweighted UniFrac distances
using evenly sampled OTU abundances. The prediction of the
functional composition of a metagenome with marker gene
data and a database of reference genomes was performed using
phylogenetic investigation of communities, by reconstructing
the unobserved states (PICRUSt, Version 1.1.1), as described by
Langille et al (38).

Graphical representations of the results were created using
STAMP (39). Unless otherwise stated, the data are presented
as Mean ± SD. Continuous variables between independent
samples were compared using the Mann-Whitney test or
the unpaired-sample t-tests. Results with P-values <0.05
were considered statistically significant. The Spearman’s rank
correlation was used to determine the statistical dependence
between continuous variables. Specifically, the analyses were
performed with the ANOSIM test for differences in microbial
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community composition. The SPSS statistical package, version
24.0 (SPSS) was used to perform all analyses.

RESULTS

Participants
In all, 247 participants including 75 non-smoking female lung
cancer patients and 172 healthy controls were recruited for this
study. The lung cancer group and control group were matched
for age (61.50± 9.32 vs. 59.04± 7.79, respectively, P = 0.104).

Demographics and clinical profiles of all subjects (75 cancer
patients and 172 healthy controls) are presented in Table S1.

Decrease in Microbial Diversity and
Richness in Non-smoking Female Lung
Cancer Patients
The alpha diversity of the salivary microbiota of non-smoking
female lung cancer patients was lower than that of healthy
controls, in terms of both diversity (Shannon index, 4.56 ± 1.03
vs. 5.22 ± 0.85, P < 0.01, Figure 1A) and richness (Ace index,
3911.04± 432.36 vs. 5009.81± 509.10, P < 0.0001, Figure 1B).

Relative Taxon Abundance in Microbiota of
Lung Cancer Patients and Control Subjects
We compared relative taxon abundance in the microbiota of lung
cancer patients and control subjects, to further explore the oral
microbial community features of lung cancer patients. Figure 2
illustrates the per subject bacterial taxonomy distribution at
the genus and phylum level. It can be seen that the inter-
individual variation in taxonomic composition is high and
that no taxa is dominantly present among all individuals at
the sequencing depth employed. Venn diagrams are used to
evaluate the number and identity of the shared OTUs between
the cancer and the control groups. The result indicates that
64.08% (66/103) and 5.82% (6/103) of the core OTUs were
identified in these two groups (Figure 3A). At the phylum level,
Proteobacteria, Firmicutes and Bacteroidetes were the dominant
phyla representing over 97% of the total phyla in both the
cancer and control groups. The microbiome composition was

dominated by the phyla Proteobacteria (71.80% ± 23.22% in
patients and 69.35% ± 18.97% (s.d.) in controls) and Firmicutes
(13.74% ± 15.96% in patients and 16.22% ± 16.83% (s.d.) in
controls), followed by Bacteriodetes (11.88% % ± 17.06% in
patients and 11.93% ± 10.82% (s.d.) in controls; Figure 3B).
The genus Acinetobacter (16.79% ± 22.70% in patients and
21.48% ± 20.42% (s.d.) in controls) dominated the microbiome,
followed by Streptococcus with a high variation (8.19% ±

12.64% in patients and 10.76% ± 13.91% (s.d.) in controls).
(Figure 3C).

Significant Variation of Microbiome
Structure Between Lung Cancer Patients
and Controls
The principal coordinates analysis (PCoA) based on unweighted
UniFrac distance (Figure 4A) and weighted UniFrac distance
(Figure 4B) indicated a significant difference between the lung
cancer and control groups, and the analysis of similarities
(ANOSIM) indicated that the structure of the salivary microbiota
significantly differed between the lung cancer and the control
groups (ANOSIM, r = 0.454, P < 0.001, unweighted UniFrac;
r= 0.113, P < 0.01, weighted UniFrac).

Differential Taxonomic Abundance
Between Lung Cancer Patients and
Controls
A LEfSe comparison of the oral microbiota between the control
and lung cancer groups was performed to study the specific
lung cancer development-associated bacterial taxa. An LDA
score above 3 indicated the greatest difference in taxa from
the phylum to the genus level (Figure 5A). A cladogram
is used to represent the structure and predominant bacteria
of the microbiota in the control and lung cancer groups
(Figure 5B). The level of Proteobacteria at the phylum level
increased while the level of Firmicutes decreased, in the lung
cancer group (Figure 5A). The genera Sphingomonas (P <

0.05) and Blastomonas (P < 0.0001; belonging to the family
Sphingomonadaceae; Figures 5C,D) were enriched in non-
smoking female lung cancer patients, whereas Acinetobacter (P

FIGURE 1 | Diversity and richness of oral microbiota in cancer and control. (A) Shannon index; (B) Ace. **P < 0.01, ****P < 0.0001, unpaired t-test.
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FIGURE 2 | Taxonomic characterization of the salivary microbiome among lung cancer and control. (A) Phylum level; (B) Genus level.

< 0.001) and Streptococcus (P < 0.01) were enriched in the
controls (Figures 5E,F).

Associations Between Oral Microbiota and
Immunocytochemistry Markers
We analyzed a set of immunocytochemistry markers for
thyroid transcription factor (TTF-1), Napsin A and cytokeratin
(CK7), and compared their results with the corresponding
salivary microbiome. The Spearman’s rank correlation coefficient
was calculated for the oral microbiota of each subject
and several immunohistochemical markers consisting of TIF-
1, Napsin A, and CK7 (Figure 6). There were significant
correlations (P < 0.05) among two bacterial biomarkers and
the three immunohistochemical markers. As displayed in
Figure 6, there is a significant positive correlation between
CK7 and Enterobacteriaceae (r = 0.223, P < 0.05). At the
same time, Napsin A is positively associated with genera

Blastomonas (r = 0.251, P < 0.05). TTF-1 exhibits a
significant positive (r = 0.262, P < 0.05) correlation with
Enterobacteriaceae.

Functional Capacity Changes of Oral
Microbiome Associated With Lung Cancer
Although 16S rRNA gene analysis indicate the presence of
bacteria in a given sample, it does not provide information with
respect to their functions. Hence, we used the PICRUSt program
to analyze our data, to indirectly infer the function based on the
known pathways of organisms categorized to a given species-
level OTU. It was observed that functional pathways relating
to cancer, p53 signaling pathway, apoptosis, and tuberculosis
were enriched in non-smoking female lung cancer patients
(Figure 7).
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FIGURE 3 | Comparison of OTUs and relative taxa abundance between lung cancer and control groups. (A) Venn diagram; (B) comparison of relative taxa

abundance between lung cancer and control group at phylum level; (C) comparison of relative taxa abundance between lung cancer and control group at genus level.

DISCUSSION

Our study revealed that salivary microbiota was significantly
associated with lung cancer in non-smoking women. A high-
throughput method was used to analyze bacterial populations
in the saliva samples of non-smoking female lung cancer
subjects and matched controls. It was found that there
was lower microbial diversity and richness and obvious
dysbiosis in the salivary microbiota of non-smoking female
lung cancer patients, and the structure also differed when
compared to that of the healthy controls. There is also
evidence that certain clinical immunocytochemistry markers
may be correlated with the variation in salivary microbiome.
This is a pioneering investigation demonstrating that high-
throughput measurements of salivary microbiome indicate
potential bacterial dysbiosis associated with lung cancer in non-
smoking women.

The salivary microbiota is dependent on the food
consumption patterns, ethnic backgrounds, age (40) and
oral environment, such as smoking (41). Several studies have
observed effects of smoking on oral bacteria (21). Quite often,
lung cancer is considered as a disease of smokers, however
there have been limited efforts to study lung cancer in non-
smokers (3, 42). Recently, major differences in terms of gender,
and molecular and clinical-pathological discrepancy in non-
smokers and smokers with lung cancer have been identified,
indicating that they may not be the same disease (2, 12). It was
also suggested that gender-dependent hormones could play a
potential role in the development of lung cancer, based on the
fact that lung cancer in female non-smokers exhibited a higher
proportion compared with male non-smokers (5, 43). It is as yet
unknown whether there is a greater contribution of risk factors
other than smoking to the increased risk of carcinogenesis in
non-smoking female patients (44). Non-smoking female lung

Frontiers in Oncology | www.frontiersin.org 6 November 2018 | Volume 8 | Article 520

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Salivary Microbiome in Lung Cancer

FIGURE 4 | PCoA analysis of the microbiota among lung cancer and control groups. (A) unweighted UniFrac PCoA; (B) weighted UniFrac PCoA.

cancer patients are considered a different population (45) and
our unique study population is a major strength of our study, as
the correlation between lung cancer and oral microbiome could
be suitably studied because the effect of smoking was excluded.

The key findings of our study indicate that genera Blastomonas
and Sphingomonas were significantly increased in the oral
microbiota of lung cancer patients, while Acinetobacte and
Streptococcus were higher in controls. Recent studies also
identified Streptococcus in chronic obstructive pulmonary disease
(COPD) (46) and cystic fibrosis (CF) lungmicrobiota (47). Under
certain circumstance, Streptococcus could become potentially
invasive to target the host fibronectin. Thereafter, a cytokine
response could be induced to promote inflammation and further
lead to carcinogenesis (48, 49). Blastomonas and Sphingomonas
were previously identified as present in relatively high abundance
in pneumonia patients (50). They also have a critical impact in
systemic immune responses and affect the therapy for COPD and
lung cancer (51, 52).

The dynamic balance between oral microbiota and the
immune system has as yet not been fully studied. The
healthy immune system in the oral cavity not only interacts
with the commensal microbiota but also has to defend
against pathogenic microbes (53). Oral microbiota can
also be altered by immune dysregulation. There are several
human diseases that could affect the balance of the host oral
microbiota and effect the host immune system. When there
is any disturbance in this balance of the immune system,
the symbiotic relationship could shift, causing extensive
colonization, and growth of conditioned pathogens. These
opportunistic pathogens would induce pathogenic process
that could finally lead to various symptomatic malignancies
(53, 54).

In turn, the dysbiosis of oral microbiota affects the systemic
immune system, which may intensify immune disorders.
Therefore, oral bacteria could be involved in the pathogenesis
and development of lung cancer (54). The microbial balance or
“symbiosis” turns into imbalance or “dysbiosis” due to various
influencing factors, which could probably contribute to the
pathogenesis of the diseases through systemic inflammatory
responses (55).

The Spearman’s rank correlation analysis conducted in
this study indicated that the oral microbiota was associated
with immunocytochemistry markers in lung cancer. TTF-1
and CK7 exhibited a significantly positive correlation with
Enterobacteriaceae, and Napsin A was positively associated with
genus Blastomonas. The major advantage of this study is the
novel hypothesis and the first report on the relationship between
salivary microbiota and immunoreactivity markers in non-
smoking female lung cancer patients. The results provide novel
insights that are important for studies on salivary microbiome
associated with lung cancer in non-smoking women, and which
correlate with immunocytochemistry markers. TTF-1 is found
in epithelial cells from thyroid and lung tumors. Studies have
shown that TTF-1 could play a critical role in the pathogenesis of
primary lung adenocarcinoma (25, 56). CK7 is clinically used to
label certain types of normal and neoplastic glandular epithelia,
which may be positive in lungs (57). As a member of the aspartic
proteinase family, Napsin A is expressed in healthy lungs and
is also frequently expressed in lung adenocarcinomas. Using
immunohistochemistry for TTF-1, CK7 and Napsin A, we can
reduce the false diagnosis rate due to aberrant immunoreactivity
and thus increase reliability (58).

Our study found that TTF-1 and CK7 exhibited a significantly
positive correlation with Enterobacteriaceae. As a significantly
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FIGURE 5 | Characteristics of microbial community composition in lung cancer and control groups. (A) Enriched taxa in lung cancer and control oral microbiota are

represented in a cladogram. The central point represents the root of the tree (bacteria), and each ring represents the next lower taxonomic level (phylum to genus: p,

phylum; c, class; o, order; f, family; g, genus). The diameter of each circle represents the relative abundance of the taxon. (B) Most differentially abundant

taxa between lung cancer and control groups (LDA score above 3), generated from LEfSe analysis. (C–F) Comparison of relative abundance at the bacterial genus

level between lung cancer and control groups; *P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001 significantly different by Mann Whitney test.
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FIGURE 6 | Heatmap for Spearman correlation analysis between oral microbiota of lung cancer and the immunocytochemistry markers.

opportunistic pathogen, Enterobacteriaceae can exist in the
human gut without causing symptoms or diseases under
normal conditions (59). Therefore, significant variation of
Enterobacteriaceae may be caused by host immunity and
environmental factors such as redox state and oxygen availability,
which may lead to immune responses to disease development in
the case ofmicrobiota dysbiosis in the lung (60). A series of recent
studies have started to focus on gut microbiota in lung disease
and gut-lung axis (61–63). These new findings accumulated to
better understand the links between microbial exposure and
autoimmunity and allergy (60).

Our study also found that Napsin A was positively associated
with genus Blastomonas. The genus Blastomonas, which belongs
to the family Sphingomonadaceae, could be isolated from lake
water, sea water, fresh water, and even hospital water (64–66).
Even though disinfectants are used in drinking water distribution
systems (DWDS), plumbing systems and fixtures in buildings are
colonized by bacteria (67). Drinking water could influence the

composition and diversity of commensal oral and gut bacteria
in human, inducing an altered autoimmune response and lung
diseases incidence (68).

There are complex interactions between oral microbiota
and the host, and as yet, our knowledge about these
comprehensive interactions is limited (60). However, it is
not necessarily that the functions of the microbiota are solely
dependent on any one of these interactions, and alterations
in these relationships may affect human health and cause
disease (60). These bacteria may shed different microbial
bioactive molecules and affect the host (69). It is known that
apoptosis is highly regulated and plays an important role
in immune response and tumorigenesis (70, 71). The p53
signaling pathway is recognized as a potential risk factor
in lung adenocarcinoma tumorigenesis and survival (72).
The observed up-regulation in the p53 signaling pathways
suggests potential pathogenic functions of these salivary
microbiota. These findings suggest that oral microbiome
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FIGURE 7 | Functional categories with statistically significant differences between tumor and controls at level. (A) p53 signaling pathway; (B) apoptosis;

(C) tuberculosis; (D) pathways in cancer. *P < 0.05.

potentially regulate of lung cancer cell apoptosis through
p53 pathway, albeit it is not the exclusive pathway in
this process.

Further longitudinal studies need to be conducted to
testify whether microbiome variation is a causative factor for
carcinogenesis or an abductive consequence of cancer onset
(73). Salivary microbiota may influence secondary metabolism
and participate in immunity and stress resistance of the host
(74). Whether or not it is viable, oral microbiota could still
play an important role in inflammatory responses (60). In
contrast, oral microorganisms are more likely to be colonize and
overgrowth in the respiratory tract of subjects with lung disease
(75). Different types of bacteria may contribute to the host-
microbe interactions in various manner, which urgently demand
future investigations to decipher the mechanisms of each of these
associations (60).

In summary, this study provides an insight on oral
microbiome as a potential reservoir of bacterial pathogens in
non-smoking female lung cancer (76). Discovery of potential
relationship between host and bacterial biomarkers may lead
to non-invasive strategies to help detecting and classifying
the different disease stages. Goals include identifying new
host and microbial biomarkers and function, characterizing
the function of the host innate and adaptive microbial
metabolism systems, and the dynamic operations of the
microbiota.

CONCLUSIONS

This study suggests the critical role microbiota dysbiosis plays
and indicates that certain bacterial species may contribute to
lung cancer in non-smoking women. These results reveal distinct
salivary microbiome profiles in non-smoking female lung cancer
patients and provide evidence that salivary microbiota can be an
informative source for discovering non-invasive biomarkers of
lung cancer.
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