1,847 research outputs found

    Neural Machine Translation Inspired Binary Code Similarity Comparison beyond Function Pairs

    Full text link
    Binary code analysis allows analyzing binary code without having access to the corresponding source code. A binary, after disassembly, is expressed in an assembly language. This inspires us to approach binary analysis by leveraging ideas and techniques from Natural Language Processing (NLP), a rich area focused on processing text of various natural languages. We notice that binary code analysis and NLP share a lot of analogical topics, such as semantics extraction, summarization, and classification. This work utilizes these ideas to address two important code similarity comparison problems. (I) Given a pair of basic blocks for different instruction set architectures (ISAs), determining whether their semantics is similar or not; and (II) given a piece of code of interest, determining if it is contained in another piece of assembly code for a different ISA. The solutions to these two problems have many applications, such as cross-architecture vulnerability discovery and code plagiarism detection. We implement a prototype system INNEREYE and perform a comprehensive evaluation. A comparison between our approach and existing approaches to Problem I shows that our system outperforms them in terms of accuracy, efficiency and scalability. And the case studies utilizing the system demonstrate that our solution to Problem II is effective. Moreover, this research showcases how to apply ideas and techniques from NLP to large-scale binary code analysis.Comment: Accepted by Network and Distributed Systems Security (NDSS) Symposium 201

    Contribution of DKDK Continuum in the QCD Sum Rule for DsJ(2317)D_{sJ}(2317)

    Full text link
    Using the soft-pion theorem and the assumption on the final-state interactions, we include the contribution of DKDK continuum into the QCD sum rules for DsJ(2317)D_{sJ}(2317) meson. We find that this contribution can significantly lower the mass and the decay constant of Ds(0+)D_s(0^+) state. For the value of the current quark mass mc(mc)=1.286GeVm_c(m_c)=1.286 {\rm GeV}, we obtain the mass of Ds(0+)D_s(0^+) M=2.33±0.02GeVM=2.33 \pm 0.02 {\rm GeV} in the interval s0=7.58.0GeV2s_0=7.5-8.0 {\rm GeV}^2, being in agreement with the experimental data, and the vector current decay constant of Ds(0+)D_s(0^+) f0=0.128±0.013GeVf_0=0.128 \pm 0.013 {\rm GeV}, much lower than those obtained in previous literature

    Improving energy efficiency in a wireless sensor network by combining cooperative MIMO with data aggregation

    Get PDF
    In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems

    Late Miocene magnetostratigraphy of Jianzha Basin in the northeastern margin of the Tibetan Plateau and changes in the East Asian summer monsoon

    Get PDF
    Jianzha Basin is located in the northeastern Tibetan Plateau (NETP) and contains a thick sequence of Cenozoic sediments that are an archive of information about the growth of the Tibetan Plateau and the evolution of the arid environment of the interior of Asia. Here, we present magnetostratigraphic and palaeoenvironmental records from a 361-m-thick sequence of Late Cenozoic eolian Red Clay and intercalated fluviolacustrine deposits in the Jianzha Basin. The magnetostratigraphic results show that the sediments have recorded a continuous geomagnetic polarity sequence from C5r.3r to C3r, spanning the interval from 11.8 to 5.8Ma in the Late Miocene. There are two intervals of rapidly fluctuating sedimentation rates between similar to 10 and similar to 6Ma, which we interpret as a response to a series of uplifts and expansions to the north and to the east in the NETP. The fluctuations in Rb/Sr ratio and magnetic susceptibility before similar to 8.57Ma reflect intensified East Asian summer monsoon (EASM) precipitation which resulted from the growth of the NETP. From similar to 8.57 to similar to 7.21Ma, the EASM was impacted by global cooling and ice build-up in the Northern Hemisphere in addition to the uplift of the Tibetan Plateau (TP) in the Late Miocene. From similar to 8.57 to similar to 7.21Ma, there is a lack of coherency between the fluctuations in MS and Rb/Sr ratio; however, subsequently, there is significant coherency between the Rb/Sr ratio and the deep-sea oxygen isotope record present. This suggests that from similar to 8.57Ma, the eolian Red Clay sediments in the Jianzha Basin were significantly affected by the addition of dust derived from the deforming and uplifting areas of the TP
    corecore