6 research outputs found

    Map Reconstruction of radio observations with Conditional Invertible Neural Networks

    Full text link
    In radio astronomy, the challenge of reconstructing a sky map from time ordered data (TOD) is known as an inverse problem. Standard map-making techniques and gridding algorithms are commonly employed to address this problem, each offering its own benefits such as producing minimum-variance maps. However, these approaches also carry limitations such as computational inefficiency and numerical instability in map-making and the inability to remove beam effects in grid-based methods. To overcome these challenges, this study proposes a novel solution through the use of the conditional invertible neural network (cINN) for efficient sky map reconstruction. With the aid of forward modeling, where the simulated TODs are generated from a given sky model with a specific observation, the trained neural network can produce accurate reconstructed sky maps. Using the five-hundred-meter aperture spherical radio telescope (FAST) as an example, cINN demonstrates remarkable performance in map reconstruction from simulated TODs, achieving a mean squared error of 2.29±2.14×10−4 K22.29\pm 2.14 \times 10^{-4}~\rm K^2, a structural similarity index of 0.968±0.0020.968\pm0.002, and a peak signal-to-noise ratio of 26.13±5.2226.13\pm5.22 at the 1σ1\sigma level. Furthermore, by sampling in the latent space of cINN, the reconstruction errors for each pixel can be accurately quantified.Comment: Accepted for publication in Research in Astronomy and Astrophysics (RAA); 20 pages, 10 figure

    Explicit Intensity Control for Accented Text-to-speech

    Full text link
    Accented text-to-speech (TTS) synthesis seeks to generate speech with an accent (L2) as a variant of the standard version (L1). How to control the intensity of accent in the process of TTS is a very interesting research direction, and has attracted more and more attention. Recent work design a speaker-adversarial loss to disentangle the speaker and accent information, and then adjust the loss weight to control the accent intensity. However, such a control method lacks interpretability, and there is no direct correlation between the controlling factor and natural accent intensity. To this end, this paper propose a new intuitive and explicit accent intensity control scheme for accented TTS. Specifically, we first extract the posterior probability, called as ``goodness of pronunciation (GoP)'' from the L1 speech recognition model to quantify the phoneme accent intensity for accented speech, then design a FastSpeech2 based TTS model, named Ai-TTS, to take the accent intensity expression into account during speech generation. Experiments show that the our method outperforms the baseline model in terms of accent rendering and intensity control.Comment: 5 pages, 3 figures. Submitted to ICASSP 2023. arXiv admin note: text overlap with arXiv:2209.1080

    Learning Diverse Tone Styles for Image Retouching

    Full text link
    Image retouching, aiming to regenerate the visually pleasing renditions of given images, is a subjective task where the users are with different aesthetic sensations. Most existing methods deploy a deterministic model to learn the retouching style from a specific expert, making it less flexible to meet diverse subjective preferences. Besides, the intrinsic diversity of an expert due to the targeted processing on different images is also deficiently described. To circumvent such issues, we propose to learn diverse image retouching with normalizing flow-based architectures. Unlike current flow-based methods which directly generate the output image, we argue that learning in a style domain could (i) disentangle the retouching styles from the image content, (ii) lead to a stable style presentation form, and (iii) avoid the spatial disharmony effects. For obtaining meaningful image tone style representations, a joint-training pipeline is delicately designed, which is composed of a style encoder, a conditional RetouchNet, and the image tone style normalizing flow (TSFlow) module. In particular, the style encoder predicts the target style representation of an input image, which serves as the conditional information in the RetouchNet for retouching, while the TSFlow maps the style representation vector into a Gaussian distribution in the forward pass. After training, the TSFlow can generate diverse image tone style vectors by sampling from the Gaussian distribution. Extensive experiments on MIT-Adobe FiveK and PPR10K datasets show that our proposed method performs favorably against state-of-the-art methods and is effective in generating diverse results to satisfy different human aesthetic preferences. Source code and pre-trained models are publicly available at https://github.com/SSRHeart/TSFlow

    Exploiting modality-invariant feature for robust multimodal emotion recognition with missing modalities

    Full text link
    Multimodal emotion recognition leverages complementary information across modalities to gain performance. However, we cannot guarantee that the data of all modalities are always present in practice. In the studies to predict the missing data across modalities, the inherent difference between heterogeneous modalities, namely the modality gap, presents a challenge. To address this, we propose to use invariant features for a missing modality imagination network (IF-MMIN) which includes two novel mechanisms: 1) an invariant feature learning strategy that is based on the central moment discrepancy (CMD) distance under the full-modality scenario; 2) an invariant feature based imagination module (IF-IM) to alleviate the modality gap during the missing modalities prediction, thus improving the robustness of multimodal joint representation. Comprehensive experiments on the benchmark dataset IEMOCAP demonstrate that the proposed model outperforms all baselines and invariantly improves the overall emotion recognition performance under uncertain missing-modality conditions. We release the code at: https://github.com/ZhuoYulang/IF-MMIN.Comment: 5 pages, 3 figures, 1 table. Submitted to ICASSP 2023. We release the code at: https://github.com/ZhuoYulang/IF-MMI
    corecore