11 research outputs found
The uppermost monoterpenes improving Cinnamomum camphora thermotolerance by serving signaling functions
Terpenes serve important functions in enhancing plant thermotolerance. Cinnamomum camphora mainly has eucalyptol (EuL), camphor (CmR), linalool (LnL) and borneol (BeL) chemotypes basing on the uppermost monoterpenes. To reveal the thermotolerance mechanisms of these uppermost monoterpenes (eucalyptol, camphor, linalool, and borneol) in C. camphora, we surveyed the ROS metabolism and photosynthesis in the 4 chemotypes fumigated with the corresponding uppermost monoterpene after fosmidomycin (Fos) inhibiting monoterpene synthesis under high temperature at 38°C (Fos+38°C+monoterpene), and investigated the related gene expression in EuL and CmR. Meanwhile, the thermotolerance differences among the 4 uppermost monoterpenes were analyzed. In contrast to normal temperature (28°C), ROS levels and antioxidant enzyme activities in the 4 chemotypes increased under 38°C, and further increased in the treatment with Fos inhibiting monoterpene synthesis at 38°C (Fos+38°C), which may be caused by the alterations in expression of the genes related with non-enzymatic and enzymatic antioxidant formation according to the analyses in EuL and CmR. Compared with Fos+38°C treatment, Fos+38°C+monoterpene treatments lowered ROS levels and antioxidant enzyme activities for the increased non-enzymatic antioxidant gene expression and decreased enzymatic antioxidant gene expression, respectively. High temperature at 38°C reduced the chlorophyll and carotenoid content as well as photosynthetic abilities, which may result from the declined expression of the genes associated with photosynthetic pigment biosynthesis, light reaction, and carbon fixation. Fos+38°C treatment aggravated the reduction. In contrast to Fos+38°C treatment, Fos+38°C+monoterpene treatments increased photosynthetic pigment content and improved photosynthetic abilities by up-regulating related gene expression. Among the 4 uppermost monoterpenes, camphor showed strong abilities in lowering ROS and maintaining photosynthesis, while eucalyptol showed weak abilities. This was consistent with the recovery effects of the gene expression in the treatments with camphor and eucalyptol fumigation. Therefore, the uppermost monoterpenes can enhance C. camphora thermotolerance as signaling molecules, and may have differences in the signaling functions
Disrupted Resting FrontalâParietal Attention Network Topology Is Associated With a Clinical Measure in Children With Attention-Deficit/Hyperactivity Disorder
Purpose: Although alterations in resting-state functional connectivity between brain regions have been reported in children with attention-deficit/hyperactivity disorder (ADHD), the spatial organization of these changes remains largely unknown. Here, we studied frontalâparietal attention network topology in children with ADHD, and related topology to a clinical measure of disease progression.Methods: Resting-state fMRI scans were obtained from New York University Child Study Center, including 119 children with ADHD (male n = 89; female n = 30) and 69 typically developing controls (male n = 33; female n = 36). We characterized frontalâparietal functional networks using standard graph analysis (clustering coefficient and shortest path length) and the construction of a minimum spanning tree, a novel approach that allows a unique and unbiased characterization of brain networks.Results: Clustering coefficient and path length in the frontalâparietal attention network were similar in children with ADHD and typically developing controls; however, diameter was greater and leaf number, tree hierarchy, and kappa were lower in children with ADHD, and were significantly correlated with ADHD symptom score. There were significant alterations in nodal eccentricity in children with ADHD, involving prefrontal and occipital cortex regions, which are compatible with the results of previous ADHD studies.Conclusions: Our results indicate the tendency to deviate from a more centralized organization (star-like topology) towards a more decentralized organization (line-like topology) in the frontalâparietal attention network of children with ADHD. This represents a more random network that is associated with impaired global efficiency and network decentralization. These changes appear to reflect clinically relevant phenomena and hold promise as markers of disease progression
Entorhinal cortex volume, thickness, surface area and curvature trajectories over the adult lifespan
The entorhinal cortex (ERC) acts as a connection between the hippocampus and temporal cortex and plays a key role in memory retrieval and navigation. The morphology of this brain region changes with age. However, there are few quantitative magnetic resonance imaging studies of ERC morphology across the healthy adult lifespan. In this study, we quantified ERC volume, thickness, surface area, and curvature in a large number of subjects spanning seven decades of life. Using structural MRI data from 563 healthy subjects ranging from 19 to 86 years of age, we explored the adult lifespan trajectory of ERC volume, thickness, surface and curvature. ERC volume, thickness, and surface area initially increased with age, reaching a peak at about 32 years, 40 years, and 50 years of age, respectively, after which they decreased with age. ERC volume and surface area were hemispherically leftward asymmetric, whereas ERC thickness was hemispherically rightward asymmetric, with no gender differences. The direction of asymmetry differed across the measures. This informs previous inconsistencies in reports of ERC asymmetry. ERC aging began in mid-adulthood. At this stage of life, it may be important to adopt some strategies to reduce the effects of aging on cognition
Attention-deficit/hyperactivity disorder is characterized by a delay in subcortical maturation
Although previous studies have found that ADHD is characterized by a delay in cortical maturation, it is not clear whether this phenomenon was secondary to developmental trajectories in subcortical regions (caudate, putamen, pallidum, thalamus, hippocampus and amygdala). Using the ADHD-200 dataset, we estimated subcortical volumes in 339 individuals with ADHD and 568 typically developing controls. We defined the growth trajectory of each subcortical structure, delineating a phase of childhood increase followed by an adolescent decrease in subcortical volumes using a quadratic growth model. From these trajectories, the age of attaining peak subcortical volumes was derived and used as an index of subcortical maturation. We found that subcortical structures (caudate, putamen, pallidum, thalamus, hippocampus and amygdala) followed curvilinear trajectories similar to those reported in previous studies. The volumes of these subcortical structures in ADHD were also delayed in the developmental trajectory, which suggested that ADHD may be characterized by a delay in subcortical maturation. This delay may lead to a shift in which individuals with ADHD go through the process of pruning the nerve connections that is part of the normal maturation process during adolescence. Further, we also found that the asymmetric development of subcortical structures was abnormal in ADHD, which resulted from the imbalance of the maturation delay of bilateral subcortical structures. The subcortical maturation delay may play an important role in the pathophysiology of ADHD. Our findings provide new potential targets to investigate the pathophysiology of ADHD
Fabrication of Monodisperse Magnetite Hollow Spheres
Monodisperse Fe(3)O(4) hollow spheres with average diameter of 400 nm and shell thickness of 60 nm were prepared through a one-pot solvothermal process with the presence of NH(4)Ac as the structure-directing agent, and a novel gas-bubble-assisted Ostwald ripening process was proposed to explain the formation of hollow structures. According to this mechanism, hollow Fe(3)O(4) and MnFe(2)O(4) ferrite microspheres with controlled particle size were obtained using urea and ammonia as the structure-directing agents, and porous Fe(3)O(4) spheres with particle size of 100 nm and pore size of 10 nm were obtained by the assistance of bicarbonate of ammonia. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy were used to characterize the structure of synthesized products, and the magnetic property investigation shows that the hollow microspheres exhibit a ferromagnetic behavior and possess a higher saturation magnetization (M(s)) than that of the solid microspheres
4-Terminal Inorganic Perovskite/Organic Tandem Solar Cells Offer 22% Efficiency
Abstract After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10Â years, it is becoming harder and harder to improve their power conversion efficiencies. Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells. Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells, including 2-terminal and 4-terminal structures. However, very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells. In this work, semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells, achieving a power conversion efficiency of 21.25% for the tandem cells with spin-coated perovskite layer. By using drop-coating instead of spin-coating to make the inorganic perovskite films, 4-terminal tandem cells with an efficiency of 22.34% are made. The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells. In addition, equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series. The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter
DataSheet_1_The uppermost monoterpenes improving Cinnamomum camphora thermotolerance by serving signaling functions.doc
Terpenes serve important functions in enhancing plant thermotolerance. Cinnamomum camphora mainly has eucalyptol (EuL), camphor (CmR), linalool (LnL) and borneol (BeL) chemotypes basing on the uppermost monoterpenes. To reveal the thermotolerance mechanisms of these uppermost monoterpenes (eucalyptol, camphor, linalool, and borneol) in C. camphora, we surveyed the ROS metabolism and photosynthesis in the 4 chemotypes fumigated with the corresponding uppermost monoterpene after fosmidomycin (Fos) inhibiting monoterpene synthesis under high temperature at 38°C (Fos+38°C+monoterpene), and investigated the related gene expression in EuL and CmR. Meanwhile, the thermotolerance differences among the 4 uppermost monoterpenes were analyzed. In contrast to normal temperature (28°C), ROS levels and antioxidant enzyme activities in the 4 chemotypes increased under 38°C, and further increased in the treatment with Fos inhibiting monoterpene synthesis at 38°C (Fos+38°C), which may be caused by the alterations in expression of the genes related with non-enzymatic and enzymatic antioxidant formation according to the analyses in EuL and CmR. Compared with Fos+38°C treatment, Fos+38°C+monoterpene treatments lowered ROS levels and antioxidant enzyme activities for the increased non-enzymatic antioxidant gene expression and decreased enzymatic antioxidant gene expression, respectively. High temperature at 38°C reduced the chlorophyll and carotenoid content as well as photosynthetic abilities, which may result from the declined expression of the genes associated with photosynthetic pigment biosynthesis, light reaction, and carbon fixation. Fos+38°C treatment aggravated the reduction. In contrast to Fos+38°C treatment, Fos+38°C+monoterpene treatments increased photosynthetic pigment content and improved photosynthetic abilities by up-regulating related gene expression. Among the 4 uppermost monoterpenes, camphor showed strong abilities in lowering ROS and maintaining photosynthesis, while eucalyptol showed weak abilities. This was consistent with the recovery effects of the gene expression in the treatments with camphor and eucalyptol fumigation. Therefore, the uppermost monoterpenes can enhance C. camphora thermotolerance as signaling molecules, and may have differences in the signaling functions.</p
Image_1_The uppermost monoterpenes improving Cinnamomum camphora thermotolerance by serving signaling functions.tif
Terpenes serve important functions in enhancing plant thermotolerance. Cinnamomum camphora mainly has eucalyptol (EuL), camphor (CmR), linalool (LnL) and borneol (BeL) chemotypes basing on the uppermost monoterpenes. To reveal the thermotolerance mechanisms of these uppermost monoterpenes (eucalyptol, camphor, linalool, and borneol) in C. camphora, we surveyed the ROS metabolism and photosynthesis in the 4 chemotypes fumigated with the corresponding uppermost monoterpene after fosmidomycin (Fos) inhibiting monoterpene synthesis under high temperature at 38°C (Fos+38°C+monoterpene), and investigated the related gene expression in EuL and CmR. Meanwhile, the thermotolerance differences among the 4 uppermost monoterpenes were analyzed. In contrast to normal temperature (28°C), ROS levels and antioxidant enzyme activities in the 4 chemotypes increased under 38°C, and further increased in the treatment with Fos inhibiting monoterpene synthesis at 38°C (Fos+38°C), which may be caused by the alterations in expression of the genes related with non-enzymatic and enzymatic antioxidant formation according to the analyses in EuL and CmR. Compared with Fos+38°C treatment, Fos+38°C+monoterpene treatments lowered ROS levels and antioxidant enzyme activities for the increased non-enzymatic antioxidant gene expression and decreased enzymatic antioxidant gene expression, respectively. High temperature at 38°C reduced the chlorophyll and carotenoid content as well as photosynthetic abilities, which may result from the declined expression of the genes associated with photosynthetic pigment biosynthesis, light reaction, and carbon fixation. Fos+38°C treatment aggravated the reduction. In contrast to Fos+38°C treatment, Fos+38°C+monoterpene treatments increased photosynthetic pigment content and improved photosynthetic abilities by up-regulating related gene expression. Among the 4 uppermost monoterpenes, camphor showed strong abilities in lowering ROS and maintaining photosynthesis, while eucalyptol showed weak abilities. This was consistent with the recovery effects of the gene expression in the treatments with camphor and eucalyptol fumigation. Therefore, the uppermost monoterpenes can enhance C. camphora thermotolerance as signaling molecules, and may have differences in the signaling functions.</p
Bananaâshaped electron acceptors with an electronârich core fragment and 3D packing capability
Abstract The emergence of Y6âtype nonfullerene acceptors has greatly enhanced the power conversion efficiency (PCE) of organic solar cells (OSCs). However, which structural feature is responsible for the excellent photovoltaic performance is still under debate. In this study, two Y6âlike acceptors BDOTPâ1 and BDOTPâ2 were designed. Different from previous Y6âtype acceptors featuring an AâDâAÊčâDâA structure, BDOTPâ1, and BDOTPâ2 have no electronâdeficient AÊč fragment in the core unit. Instead, there is an electronârich dibenzodioxine fragment in the core. Although this modification leads to a marked change in the molecular dipole moment, electrostatic potential, frontier orbitals, and energy levels, BDOTP acceptors retain similar threeâdimensional packing capability as Y6âtype acceptors due to the similar bananaâshaped molecular configuration. BDOTP acceptors show good performance in OSCs. High PCEs of up to 18.51% (certified 17.9%) are achieved. This study suggests that the bananaâshaped configuration instead of the AâDâAÊčâDâA structure is likely to be the determining factor in realizing high photovoltaic performance