7 research outputs found

    Anti-hypercholesterolemic Effects and a Good Safety Profile of SCM-198 in Animals: From ApoE Knockout Mice to Rhesus Monkeys

    Get PDF
    Although several lipid-lowering agents have been introduced for the treatment of atherosclerosis (AS), currently marketed medications have not solved the problem completely. This study aims to investigate the effects of leonurine (SCM-198) on dyslipidemia in mammals with ApoE knockout (ApoE-/-) mice, New Zealand white rabbits and senile Rhesus monkeys fed with high fat diet were dosed daily with leonurine or atorvastatin. The serum total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), and high-density lipoprotein (HDL) were determined. Moreover, in Rhesus monkeys, bodyweight, arterial ultrasound of right common carotid artery, Apolipoprotein A1 (ApoA1) and ApoB levels, hematologic and toxicological examinations were detected. Serum TC and TG in both mice and rabbits were significantly reduced by SCM-198 and atorvastatin. In the 10 mg/kg SCM-198 group of monkeys, maximum TC reduction of 24.05% was achieved at day 150, while 13.16% LDL reduction achieved at day 60, without arterial morphologic changes or adverse events. Atorvastatin (1.2 mg/kg) showed similar effects as SCM-198 in improving lipid profiles in monkeys, yet its long-term use could induce tolerance. Furthermore, leonurine suppressed genes expression of fatty acid synthesis, such as fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD-1), sterol regulatory element-binding protein (SREBF) in liver in high fat diet feeding ApoE-/- mice. SCM-198, with a reliable safety profile, is of high value in improving lipid profiles in mammals, providing an alternative to a substantial population who are statin-intolerant

    DataSheet1_Integrated network pharmacology and metabolomics to reveal the mechanism of QiShenYiQi Dripping Pills against cardiac structural and functional abnormalities.docx

    No full text
    Background: Heart failure (HF), the final stage of cardiovascular diseases, is a clinical syndrome of cardiac structural or functional abnormalities. QiShenYiQi Dripping Pills, short for QSYQ, showed effectiveness and safety in the treatment of HF according to modern pharmacological research and clinical studies, but the mechanism remains unclear. This study aims to clarify the mechanism of QSYQ in treating heart failure through the analysis to critical biomarkers, targets and pathways.Materials and Methods: In this study, the efficacies of QSYQ in non-human primates and rodents were evaluated, and the mechanism was demonstrated by integrating network pharmacology and metabolomics analysis. Furthermore, the targets from network pharmacology and the metabolites from targeted metabolomics were jointly analyzed to screen the critical pathways.Results: In rhesus monkeys with spontaneous chronic heart failure, nasogastric administration of QSYQ for 12 weeks caused profound improvement of systolic and diastolic function as evidenced by echocardiography detection. Consistently, QSYQ administration especially with higher dose lowered the blood pressure and improved the ventricular remodeling, collagen deposition and fibrosis markedly in Spontaneous Hypertension Rats (SHR) model. Computational prediction showed that QSYQ exhibited anti-HF effects possibly through HIF-1 signaling pathway, FoxO signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway and other enriched paths. Metabolomics analysis obtained 23 significantly altered metabolites, revealing that QSYQ significantly regulated the abnormal levels of fatty acids, carnitines, organic acids pyridines, nucleosides, which were mostly involved in myocardial energy metabolism related pathways.Conclusion: Based on serum and myocardium metabolomics and network pharmacology, the present study revealed that the actions of QSYQ in treating HF depend on multi-components, multi-targets and multi-pathways.</p

    2D/3D CMR tissue tracking versus CMR tagging in the assessment of spontaneous T2DM rhesus monkeys with isolated diastolic dysfunction

    No full text
    Abstract Background Spontaneous T2DM in rhesus monkeys manifests as isolated diastolic dysfunction in the early stage of diabetic cardiomyopathy, similar to humans. Myocardial deformation measurements have emerged as a superior way to measure left ventricular (LV) function in the early stage of cardiac dysfunction, making it possible to further evaluate early-stage LV dysfunction in spontaneous T2DM rhesus monkeys. Methods Spontaneous T2DM rhesus monkeys with isolated diastolic dysfunction (T2DM-DD, n = 10) and corresponding nondiabetic healthy animals (ND, n = 9) were prospectively scanned for a CMR study. Circumferential and longitudinal peak systolic strain (Ecc, Ell), time to peak strain (tEcc, tEll) and peak diastolic strain rate (CSR, LSR) obtained from 2D/3D CMR-TT were compared with those obtained from CMR tagging separately. In addition, all CMR imaging protocols were performed twice in 9 ND animals to assess test-retest reproducibility. Results Compared with the ND group, the T2DM-DD monkeys demonstrated significantly impaired LV Ecc (− 10.63 ± 3.23 vs − 14.18 ± 3.19, p < 0.05), CSR (65.50 ± 14.48 vs 65.50 ± 14.48, p < 0.01), Ell (− 9.11 ± 2.59 vs − 14.17 ± 1.68, p < 0.05), and LSR (59.43 ± 19.17 vs 108.46 ± 22.33, p < 0.01) with the tagging. Only Ecc (− 13.10 ± 2.47 vs − 19.03 ± 3.69, p < 0.01) and CSR (148.90 ± 31.27 vs 202.00 ± 51.88, p < 0.01) were significantly reduced with 2D CMR-TT, and only Ecc (− 13.77 ± 1.98 vs − 17.26 ± 3.78, p < 0.05) was significantly reduced with 3D CMR-TT. Moreover, 2D/3D CMR-TT-derived Ecc and CSR correlated with the corresponding tagging values collectively, with a statistically significant ICC value (p < 0.05). Test-retest repeatability analysis showed that most tagging-derived biomarkers had acceptable repeatability (p < 0.01). In addition, 2D CMR-TT-derived indicators were poorer than those derived from the tagging method but better than those obtained using the 3D method, with larger ICCs except for tEcc (p < 0.05). Conclusions LV systolic and diastolic deformations were impaired in spontaneous T2DM rhesus monkeys previously diagnosed with isolated diastolic dysfunction by echocardiography. The 2D CMR-TT-derived Ecc and CSR were effective in the evaluation of the myocardial systolic and diastolic functions of early-diabetic cardiomyopathy, with relatively higher test-retest reproducibility and acceptable correlation with the tagging method compared with the 3D CMR-TT method
    corecore