100 research outputs found

    Changes in Sensorimotor Cortical Activation in Children Using Prostheses and Prosthetic Simulators

    Get PDF
    This study aimed to examine the neural responses of children using prostheses and prosthetic simulators to better elucidate the emulation abilities of the simulators. We utilized functional near-infrared spectroscopy (fNIRS) to evaluate the neural response in five children with a congenital upper limb reduction (ULR) using a body-powered prosthesis to complete a 60 s gross motor dexterity task. The ULR group was matched with five typically developing children (TD) using their non-preferred hand and a prosthetic simulator on the same hand. The ULR group had lower activation within the primary motor cortex (M1) and supplementary motor area (SMA) compared to the TD group, but nonsignificant differences in the primary somatosensory area (S1). Compared to using their non-preferred hand, the TD group exhibited significantly higher action in S1 when using the simulator, but nonsignificant differences in M1 and SMA. The non-significant differences in S1 activation between groups and the increased activation evoked by the simulator’s use may suggest rapid changes in feedback prioritization during tool use. We suggest that prosthetic simulators may elicit increased reliance on proprioceptive and tactile feedback during motor tasks. This knowledge may help to develop future prosthesis rehabilitative training or the improvement of tool-based skills

    Use-Dependent Prosthesis Training Strengthens Contralateral Hemodynamic Brain Responses in a Young Adult With Upper Limb Reduction Deficiency: A Case Report

    Get PDF
    The purpose of the current case study was to determine the influence of an 8-week home intervention training utilizing a partial hand prosthesis on hemodynamic responses of the brain and gross dexterity in a case participant with congenital unilateral upper-limb reduction deficiency (ULD). The case participant (female, 19 years of age) performed a gross manual dexterity task (Box and Block Test) while measuring brain activity (functional near-infrared spectroscopy; fNIRS) before and after an 8-weeks home intervention training. During baseline, there was a broad cortical activation in the ipsilateral sensorimotor cortex and a non-focalized cortical activation in the contralateral hemisphere, which was non-focalized, while performing a gross manual dexterity task using a prosthesis. After the 8-week home intervention training, however, cortical activation shifted to the contralateral motor cortex while cortical activation was diminished in the ipsilateral hemisphere. Specifically, the oxygenated hemodynamics (HbO) responses increased in the medial aspects of the contralateral primary motor and somatosensory cortices. Thus, these results suggest that an 8-week prosthetic home intervention was able to strengthen contralateral connections in this young adult with congenital partial hand reduction. This was supported by the case participant showing after training an increased flexor tone, increased range of motion of the wrist, and decreased times to complete various gross dexterity tasks. Changes in HbO responses due to the home intervention training follow the mechanisms of use-dependent plasticity and further guide the use of prostheses as a rehabilitation strategy for individuals with ULD

    THE EFFECT OF CARDIORESPIRATORY FITNESS ON THE ASSESSMENT OF THE PHYSICAL WORKING CAPACITY AT THE FATIGUE THRESHOLD

    Get PDF
    Purpose: The purpose of this study was to determine if different cardiorespiratory fitness levels (maximal oxygen uptake or VO2max) affect neuromuscular fatigue as measured by the physical working capacity at the fatigue threshold (PWCFT). Methods: Fourteen adults (14 men; mean ± SD; age = 20.79 ± 0.89 years; body weight = 80.7 ± 10.91 kg; height = 178.4 ± 5.29 cm) volunteered to participate in the investigation. Each participant performed an incremental cycle ergometry test to fatigue while electromyographic (EMG) signals were measured from the vastus lateralis (VL) muscle. Mean, standard deviation, and range values were calculated for the power outputs determined by the PWCFT. The relationships for EMG amplitude and power output for each participant were examined using linear regression (SPSS software program, Chicago, IL). An alpha level of p ≤ 0.05 was considered significant for all statistical analyses. Results: Participants were divided in a low and high fitness levels according to their VO2max values. A paired dependent t-test was used to determine if there were significant mean differences in power outputs associated to the PWCFT test for the low (Mean ± SD 162.5 ± 90.14 W) and high (173.21 ± 49.70 W) VO2max groups. The results of the dependent t-test indicated that there were no significant mean differences (p \u3e 0.05) between the high and low VO2max groups. The zero-order correlation for the power outputs between groups were not significantly correlated (r = 0.23). Conclusion: The results of the present investigation indicated t

    Mechanomyographic Parameter Extraction Methods: An Appraisal for Clinical Applications

    Get PDF
    The research conducted in the last three decades has collectively demonstrated that the skeletal muscle performance can be alternatively assessed by mechanomyographic signal (MMG) parameters. Indices of muscle performance, not limited to force, power, work, endurance and the related physiological processes underlying muscle activities during contraction have been evaluated in the light of the signal features. As a non-stationary signal that reflects several distinctive patterns of muscle actions, the illustrations obtained from the literature support the reliability of MMG in the analysis of muscles under voluntary and stimulus evoked contractions. An appraisal of the standard practice including the measurement theories of the methods used to extract parameters of the signal is vital to the application of the signal during experimental and clinical practices, especially in areas where electromyograms are contraindicated or have limited application. As we highlight the underpinning technical guidelines and domains where each method is well-suited, the limitations of the methods are also presented to position the state of the art in MMG parameters extraction, thus providing the theoretical framework for improvement on the current practices to widen the opportunity for new insights and discoveries. Since the signal modality has not been widely deployed due partly to the limited information extractable from the signals when compared with other classical techniques used to assess muscle performance, this survey is particularly relevant to the projected future of MMG applications in the realm of musculoskeletal assessments and in the real time detection of muscle activity

    Brain lateralization in children with upper‑limb reduction deficiency

    Get PDF
    Background: The purpose of the current study was to determine the influence of upper-limb prostheses on brain activity and gross dexterity in children with congenital unilateral upper-limb reduction deficiencies (ULD) compared to typically developing children (TD). Methods: Five children with ULD (3 boys, 2 girls, 8.76 ± 3.37 years of age) and five age- and sex-matched TD children (3 boys, 2 girls, 8.96 ± 3.23 years of age) performed a gross manual dexterity task (Box and Block Test) while measuring brain activity (functional near-infrared spectroscopy; fNIRS). Results: There were no significant differences (p = 0.948) in gross dexterity performance between the ULD group with prosthesis (7.23 ± 3.37 blocks per minute) and TD group with the prosthetic simulator (7.63 ± 5.61 blocks per minute). However, there was a significant (p = 0.001) difference in Laterality Index (LI) between the ULD group with prosthesis (LI = − 0.2888 ± 0.0205) and TD group with simulator (LI = 0.0504 ± 0.0296) showing in a significant ipsilateral control for the ULD group. Thus, the major finding of the present investigation was that children with ULD, unlike the control group, showed significant activation in the ipsilateral motor cortex on the non-preferred side using a prosthesis during a gross manual dexterity task. Conclusions: This ipsilateral response may be a compensation strategy in which the existing cortical representations of the non-affected (preferred) side are been used by the affected (non-preferred) side to operate the prosthesis. This study is the first to report altered lateralization in children with ULD while using a prosthesis. Trial registration The clinical trial (ClinicalTrial.gov ID: NCT04110730 and unique protocol ID: IRB # 614-16-FB) was registered on October 1, 2019 (https ://clini caltr ials.gov/ct2/show/NCT04 11073 0) and posted on October 1, 2019. The study start date was January 10, 2020. The first participant was enrolled on January 14, 2020, and the trial is scheduled to be completed by August 23, 2023. The trial was updated January 18, 2020 and is currently recruitin

    THE EFFECTS OF MUSCLE CROSS-SECTIONAL AREA ON THE PHYSICAL WORKING CAPACITY AT THE FATIGUE THRESHOLD

    Get PDF
    Purpose: The purpose of this study was to examine the effects of quadriceps cross-sectional area (CSA) of the dominant quadriceps muscle in the assessment of the physical working capacity at the fatigue threshold (PWCFT) during incremental cycle ergometry. Methods: Eighteen adults (9 men and 9 women; mean age ± SD = 20.5 ± 1.04 yr; mean body weight ± SD = 73.9 ± 18.2 kg; mean height ± SD = 172.3 ± 11.5 cm; mean dominant quadriceps CSA ± SD = 68.7 ± 14.5 cm2) performed an incremental cycle ergometry test to exhaustion while the electromyographic (EMG) signals were recorded from the vastus lateralis (VL) muscles. Fatiguing and non-fatiguing power outputs were differentiated by examining the slope coefficients for the EMG amplitude versus time relationship at each power output throughout the incremental cycle ergometry test. Quadriceps CSA was estimated from an equation. Subjects were divided into groups of small quadriceps CSA (57.3 ± 10.0 cm2) and large quadriceps CSA (80.0 ± 7.6 cm2). Results: Independent t-test results indicated no significant mean differences between the PWCFT for the large and small quadriceps CSA groups (p=0.456). Conclusion: The findings of the study suggest that muscle CSA may not have a significant effect on the assessment of the PWCFT, and therefore that PWCFT may be a determinant of neuromuscular fatigue independent of muscle CSA. Future research could explore the contributions of muscle fibertype predominance to CSA and PWCFT and provide more conclusive evidence relating these variables

    Estimates of Critical Power and Anaerobic Work Capacity from a Single, All-Out Test of Less than 3-Min

    Get PDF
    The purpose of this study was to determine if Critical Power (CP) and Anaerobic Work Capacity (AWC) could be estimated from a single, all-out test of less than 3-min. Twenty-eight subjects (mean ± SD: age 23.3 ± 3.3 years, body mass 71.6 ± 16 kg) performed an incremental cycle ergometer test to exhaustion to determine peak oxygen consumption rate and heart rate peak. The 3-min all-out test was used to determine the criterion and six estimated values of CP and AWC. The criterion critical power (CP180) and anaerobic work capacity (AWC180) values were determined from the 3-min all-out test and were expressed as 30-s averages (155-180-s). The six estimated CP and AWC values were calculated from 30-s averages at decreasing 10-s intervals from 145 to 170-s (CP170 and AWC170), 135 to 160-s (CP160 and AWC160), 125 to 150-s (CP150 and AWC150), 115 to 140-s (CP140 and AWC140), 105 to 130-s (CP130 and AWC130), and 95 to 120-s (CP120 and AWC120). Mean differences, total error, constant error, standard error of the estimate, and correlations were used to compare the criterion to the estimated CP and AWC values. The results of the present study indicated that 150-s was the shortest test duration that resulted in non-significant differences between the criterion (CP180 and AWC180) and estimated CP (CP150) and AWC (AWC150) values. The subsequent validation analyses showed that there were close agreements for the estimated CP150 and AWC150 versus the criterion (CP180 and AWC180) values. Therefore, the current findings indicated that estimates of CP and AWC were not affected by shortening the test by 30-s. Reducing the length of the test to 2.5 minutes provides a less strenuous, yet valid protocol for estimating CP and AWC

    The Effect of Skinfold on the Assessment of the Mean Power Frequency at the Fatigue Threshold

    Get PDF
    International Journal of Exercise Science 9(4): 376-383, 2016. The purpose of this study was to determine if the amount of subcutaneous tissue over the quadriceps affects the assessment of mean power frequency at the fatigue threshold (MPFFT). It was hypothesized that greater skinfold values will result in lower power outputs associated to the MPFFT. Fourteen adults (Mean ± SD age = 20.7 ± 0.99; body weight = 72.8 ± 12.6 kg) performed an incremental cycle ergometry test to exhaustion while surface electromyographic (EMG) signals were measured from the vastus lateralis. The skinfold thickness of each leg was taken prior to the test, and skinfold thicknesses were separated into a larger and a smaller groups. The independent t-test showed a significant difference (p = 0.01) between the power outputs associated to the MPFFT of groups with high (Mean ± SD 130.4 ± 34.5 W) versus low skinfold (212.5 ± 61.2 W) values. The results suggested that higher subcutaneous fat may have affected the assessment of MPFFT during cycle ergometry

    Electromyographic Responses from the Vastus Medialis during Isometric Muscle Actions

    Get PDF
    This study examined the electromyographic (EMG) responses from the vastus medialis (VM) for electrodes placed over and away from the innervation zone (IZ) during a maximal voluntary isometric contraction (MVIC) and sustained, submaximal isometric muscle action. A linear electrode array was placed on the VM to identify the IZ and muscle fiber pennation angle during an MVIC and sustained isometric muscle action at 50 % MVIC. EMG amplitude and frequency parameters were determined from 7 bipolar channels of the electrode array, including over the IZ, as well as 10 mm, 20 mm and 30 mm proximal and distal to the IZ. There were no differences between the channels for the patterns of responses for EMG amplitude or mean power frequency during the sustained, submaximal isometric muscle action; however, there were differences between channels during the MVIC. The results of the present study supported the need to standardize the placement of electrodes on the VM for the assessment of EMG amplitude and mean power frequency. Based on the current findings, it is recommended that electrode placements be distal to the IZ and aligned with the muscle fiber pennation angle during MVICs, as well as sustained, submaximal isometric muscle actions
    • …
    corecore