2 research outputs found

    Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot

    Get PDF
    Understanding and control of the spin relaxation time T-1 is among the key challenges for spinbased qubits. A larger T-1 is generally favored, setting the fundamental upper limit to the qubit coherence and spin readout fidelity. In GaAs quantum dots at low temperatures and high inplane magnetic fields B, the spin relaxation relies on phonon emission and spin-orbit coupling. The characteristic dependence T-1 alpha B-5 and pronounced B-field anisotropy were already confirmed experimentally. However, it has also been predicted 15 years ago that at low enough fields, the spin-orbit interaction is replaced by the coupling to the nuclear spins, where the relaxation becomes isotropic, and the scaling changes to T-1 alpha B-3. Here, we establish these predictions experimentally, by measuring T-1 over an unprecedented range of magnetic fields-made possible by lower temperature-and report a maximum T-1 = 57 +/- 15 s at the lowest fields, setting a record electron spin lifetime in a nanostructure

    Characterization of Hydrogen Plasma Defined Graphene Edges

    Full text link
    We investigate the quality of hydrogen plasma defined graphene edges by Raman spectroscopy, atomic resolution AFM and low temperature electronic transport measurements. The exposure of graphite samples to a remote hydrogen plasma leads to the formation of hexagonal shaped etch pits, reflecting the anisotropy of the etch. Atomic resolution AFM reveals that the sides of these hexagons are oriented along the zigzag direction of the graphite crystal lattice and the absence of the D-peak in the Raman spectrum indicates that the edges are high quality zigzag edges. In a second step of the experiment, we investigate hexagon edges created in single layer graphene on hexagonal boron nitride and find a substantial D-peak intensity. Polarization dependent Raman measurements reveal that hydrogen plasma defined edges consist of a mixture of zigzag and armchair segments. Furthermore, electronic transport measurements were performed on hydrogen plasma defined graphene nanoribbons which indicate a high quality of the bulk but a relatively low edge quality, in agreement with the Raman data. These findings are supported by tight-binding transport simulations. Hence, further optimization of the hydrogen plasma etching technique is required to obtain pure crystalline graphene edges.Comment: 10 pages, 7 figure
    corecore