21 research outputs found

    Analysis by RP-HPLC and Purification by RP-SPE of the C-Tetra(p-hydroxyphenyl)resorcinolarene Crown and Chair Stereoisomers

    No full text
    A method for the separation of stereoisomer mixture of the octol C-tetra(p-hydroxyphenyl)calix[4]resorcinarene that was obtained by an acid cyclocondensation reaction between resorcinol and benzaldehyde is reported in this paper. A crude product from octol formation reaction was analyzed by reverse-phase high-performance liquid chromatography (RP-HPLC), and two well-resolved signals corresponding to the crown and chair isomers were found. A reverse phase in solid-phase extraction (RP-SPE) protocol allowed the separation of the two stereoisomers with high purity of each isomer. Finally, the crude and purified stereoisomers were characterized by using FT-IR, 1H-NMR, and 13C-NMR techniques, confirming the chemical identity of the two isomers and the efficiency in the separation process

    Aminomethylated Calix[4]resorcinarenes as Modifying Agents for Glycidyl Methacrylate (GMA) Rigid Copolymers Surface

    No full text
    Functionalization of tetrapropylcalix[4]resorcinarene, tetrapentylcalix[4]resorcinarene, tetranonylcalix[4]resorcinarene, and tetra-(4-hydroxyphenyl)calix[4]resorcinarene by means of aminomethylation reactions with the amino acids β-alanine and l-proline in the presence of aqueous formaldehyde was carried out. When β-alanine was used, the reaction products were tetrabenzoxazines. The reaction with tetra-(4-hydroxyphenyl)calix[4]resorcinarene did not proceed under the experimental conditions; therefore, l-proline was used, and the corresponding tetra-Mannich base was regio- and diasteroselectively formed. The products were characterized via FT-IR, 1H NMR, 13C NMR, and elemental analysis. With these aminomethylated-calix[4]resorcinarenes, the chemical surface modification of the copolymers poly(GMA–co–EDMA) and poly(BMA–co–EDMA–co–MMA) in a basic medium was studied. The results were quite satisfactory, obtaining the corresponding copolymers functionalized by nucleophilic substitution reaction and ring-opening between the carboxyl group of the upper rim of aliphatic calix[4]resorcinarenes and the hydroxyl group of the lower rim in the aromatic calix[4]resorcinarene and the epoxy group of the glycidyl methacrylate residue of each copolymer. The modified copolymers were characterized via FT-IR, scanning electron microscopy imaging, and elemental analysis. Finally, the modified copolymer surfaces exhibited interaction with peptides, showing their potential application in chromatographic separation techniques such as high-performance liquid chromatography

    Evidence of Isomerization in the Michael-Type Thiol-Maleimide Addition: Click Reaction between L-Cysteine and 6-Maleimidehexanoic Acid

    No full text
    The reaction between L-cysteine (Cys) and 6-maleimidohexanoic acid (Mhx) in an aqueous medium at different levels of pH was analyzed via RP-HPLC, finding the presence of two reaction products throughout the evaluated pH range. By means of solid-phase extraction (SPE), it was possible to separate the products and obtain isolated profiles enriched up to 80%. The products were analyzed individually through mass spectrometry, DAD-HPLC, NMR 1H, 13C, and two-dimensional evidence of isomerization between the hydrogen atoms of the α-amino and the thiol group present in the cysteine. Thus, it was concluded that the products obtained corresponded to a mixture of the isomer Cys-S-Mhx, where the adduct is formed by a thioether bond, and the isomer Cys-NH-Mhx, in which the union is driven by the amino group. We consider that the phenomenon of isomerization is an important finding, since it has not previously been reported for this reaction

    Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923

    No full text
    Peptides derived from LfcinB were designed and synthesized, and their antibacterial activity was tested against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Specifically, a peptide library was constructed by systemically removing the flanking residues (N or C-terminal) of Lfcin 17–31 (17FKCRRWQWRMKKLGA31), maintaining in all peptides the 20RRWQWR25 sequence that corresponds to the minimal antimicrobial motif. For this research, also included were (i) a peptide containing an Ala instead of Cys ([Ala19]-LfcinB 17–31) and (ii) polyvalent peptides containing the RRWQWR sequence and a non-natural amino acid (aminocaproic acid). We established that the lineal peptides LfcinB 17–25 and LfcinB 17–26 exhibited the greatest activity against E. coli ATCC 25922 and S. aureus ATCC 25923, respectively. On the other hand, polyvalent peptides, a dimer and a tetramer, exhibited the greatest antibacterial activity, indicating that multiple copies of the sequence increase the activity. Our results suggest that the dimeric and tetrameric sequence forms potentiate the antibacterial activity of lineal sequences that have exhibited moderate antibacterial activity

    A tetrameric peptide derived from bovine lactoferricin as a potential therapeutic tool for oral squamous cell carcinoma: A preclinical model.

    No full text
    Oral squamous cell carcinoma is the fifth most common epithelial cancer in the world, and its current clinical treatment has both low efficiency and poor selectivity. Cationic amphipathic peptides have been proposed as new drugs for the treatment of different types of cancer. The main goal of the present work was to determine the potential of LfcinB(20-25)4, a tetrameric peptide based on the core sequence RRWQWR of bovine lactoferricin LfcinB(20-25), for the treatment of OSCC. In brief, OSCC was induced in the buccal pouch of hamsters by applying 7,12-Dimethylbenz(a)anthracene, and tumors were treated with one of the following peptides: LfcinB(20-25)4, LfcinB(20-25), or vehicle (control). Lesions were macroscopically evaluated every two days and both histological and serum IgG assessments were conducted after 5 weeks. The size of the tumors treated with LfcinB(20-25)4 and LfcinB(20-25) was smaller than that of the control group (46.16±4.41 and 33.92±2.74 mm3 versus 88.77±10.61 mm3, respectively). Also, LfcinB(20-25)4 caused acellularity in the parenchymal tumor compared with LfcinB(20-25) and vehicle treatments. Furthermore, our results demonstrated that both LfcinB(20-25)4 and LfcinB(20-25) induced higher degree of apoptosis relative to the untreated tumors (75-86% vs 8%, respectively). Moreover, although the lowest inflammatory response was achieved when LfcinB(20-25)4 was used, this peptide appeared to induce higher levels of IgG antibodies relative to the vehicle and LfcinB(20-25). In addition the cellular damage and selectivity of the LfcinB(20-25)4 peptide was evaluated in vitro. These assays showed that LfcinB(20-25)4 triggers a selective necrotic effect in the carcinoma cell line. Cumulatively, these data indicate that LfcinB(20-25)4 could be considered as a new therapeutic agent for the treatment of OSCC

    In Vitro Antifungal Activity of Chimeric Peptides Derived from Bovine Lactoferricin and Buforin II against <i>Cryptococcus neoformans</i> var. <i>grubii</i>

    No full text
    Cryptococcosis is associated with high rates of morbidity and mortality. The limited number of antifungal agents, their toxicity, and the difficulty of these molecules in crossing the blood–brain barrier have made the exploration of new therapeutic candidates against Cryptococcus neoformans a priority task. To optimize the antimicrobial functionality and improve the physicochemical properties of AMPs, chemical strategies include combinations of peptide fragments into one. This study aimed to evaluate the binding of the minimum activity motif of bovine lactoferricin (LfcinB) and buforin II (BFII) against C. neoformans var. grubii. The antifungal activity against these chimeras was evaluated against (i) the reference strain H99, (ii) three Colombian clinical strains, and (iii) eleven mutant strains, with the aim of evaluating the possible antifungal target. We found high activity against these strains, with a MIC between 6.25 and 12.5 µg/mL. Studies were carried out to evaluate the effect of the combination of fluconazole treatments, finding a synergistic effect. Finally, when fibroblast cells were treated with 12.5 µg/mL of the chimeras, a viability of more than 65% was found. The results obtained in this study identify these chimeras as potential antifungal molecules for future therapeutic applications against cryptococcosis

    Shorter antibacterial peptide having high selectivity for e. Coli membranes and low potential for inducing resistance

    Get PDF
    Antimicrobial peptides (AMPs) have been recognised as a significant therapeutic option for mitigating resistant microbial infections. It has been found recently that Plasmodium falciparum-derived, 20 residue long, peptide 35409 had antibacterial and haemolytic activity, making it an AMP having reduced selectivity, and suggesting that it should be studied more extensively for obtaining new AMPs having activity solely targeting the bacterial membrane. Peptide 35409 was thus used as template for producing short synthetic peptides (<20 residues long) and evaluating their biological activity and relevant physicochemical characteristics for therapeutic use. Four of the sixteen short peptides evaluated here had activity against E. coli without any associated haemolytic effects. The 35409-1 derivative (17 residues long) had the best therapeutic characteristics as it had high selectivity for bacterial cells, stability in the presence of human sera, activity against E. coli multiresistant clinical isolates and was shorter than the original sequence. It had a powerful membranolytic effect and low potential for inducing resistance in bacteria. This peptide’s characteristics highlighted its potential as an alternative for combating infection caused by E. coli multiresistant bacteria and/or for designing new AMPs

    Design, Synthesis, and Use of Peptides Derived from Human Papillomavirus L1 Protein for the Modification of Gold Electrode Surfaces by Self-Assembled Monolayers

    No full text
    In order to obtain gold electrode surfaces modified with Human Papillomavirus L1 protein (HPV L1)-derived peptides, two sequences, SPINNTKPHEAR and YIK, were chosen. Both have been recognized by means of sera from patients infected with HPV. The molecules, Fc-Ahx-SPINNTKPHEAR, Ac–C–Ahx-(Fc)KSPINNTKPHEAR, Ac–C–Ahx-SPINNTKPHEAR(Fc)K, C–Ahx–SPINNTKPHEAR, and (YIK)2–Ahx–C, were designed, synthesized, and characterized. Our results suggest that peptides derived from the SPINNTKPHEAR sequence, containing ferrocene and cysteine residues, are not stable and not adequate for electrode surface modification. The surface of polycrystalline gold electrodes was modified with the peptides C-Ahx-SPINNTKPHEAR or (YIK)2-Ahx-C through self-assembly. The modified polycrystalline gold electrodes were characterized via infrared spectroscopy and electrochemical measurements. The thermodynamic parameters, surface coverage factor, and medium pH effect were determined for these surfaces. The results indicate that surface modification depends on the peptide sequence (length, amino acid composition, polyvalence, etc.). The influence of antipeptide antibodies on the voltammetric response of the modified electrode was evaluated by comparing results obtained with pre-immune and post-immune serum samples

    Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines

    No full text
    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B, containing the RRWQWR motif, were designed, synthesized, purified, and characterized using RP-HPLC chromatography and MALDI-TOF mass spectrometry. The antibacterial activity of the designed peptides against E. coli (ATCC 11775 and 25922) and their cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines were evaluated. Dimeric and tetrameric peptides showed higher antibacterial activity in both bacteria strains than linear peptides. The dimeric peptide (RRWQWR)2K-Ahx exhibited the highest antibacterial activity against the tested bacterial strains. Furthermore, the peptides with high antibacterial activity exhibited significant cytotoxic effect against the tested breast cancer cell lines. This cytotoxic effect was fast and dependent on the peptide concentration. The tetrameric molecule containing RRWQWR motif has an optimal cytotoxic effect at a concentration of 22 µM. The evaluated dimeric and tetrameric peptides could be considered as candidates for developing new therapeutic agents against breast cancer. Polyvalence of linear sequences could be considered as a novel and versatile strategy for obtaining molecules with high anticancer activity
    corecore