7 research outputs found

    Larvicidal efficacy screening of Anacardaciae crude extracts on the dengue hemorrhagic vector, Aedes aegypti

    Get PDF
    Vector-borne diseases are still rife because of the re-emergence of diseases transmitted by mosquitoes. The objective of this paper is to evaluate the larvicidal efficacy of crude leaf extract of Mangifera indica, Gluta renghas, and Melanochyla fasciculiflora against vector of dengue hemorrhagic fever, Aedes aegypti. These plant species are endemic species and widely distributed in Malaysian forests. Leaves of Ma. indica, G. renghas and M. fascculiflora were collected from Teluk Bahang National Park, Penang Malaysia. Fractions of leaves were segregated, air-dried, powdered and extracted using Soxhlet with methanol. The solvent was removed by using rotary evaporator to obtain the crude extract. Using WHO standard larval bioassay test method, third instar larvae of Aedes aegypti were exposed to concentration ranging from 200- 4500 ppm of methanol extract for all plant species. Larval mortality was observed after 24 hours exposure. The highest susceptibility and toxicity was recorded by Mangifera indica with the lowest concentration at 800 ppm followed by M. fasciculiflora and G. renghas. This indicates that crude plant extract is very effective in killing Ae. aegypti mosquitoes. This finding may lead to new low cost alternative, environmentally friendly method for mosquito control programs. To our knowledge, this is the first report on larvicidal bioefficacy from endemic Malaysian plants

    Presence of a predator image in potential breeding sites and oviposition responses of a dengue vector

    Get PDF
    In dengue vector control, attempts to minimize or replace the use of pesticides have mostly involved use of predators, but success has been severely impeded by difficulties associated with financial and environmental costs, predator mass production, and persistence in target habitats. Visual deterrents have been used successfully to control animal pests, in some cases in an effort to replace pesticide use. Despite evidence that visual signals are crucial in site choice for egg deposition by dengue vectors, and that female mosquitoes respond to artificial predation, the role of predator intimidation as it affects the oviposition behavior of dengue vectors remains largely unexplored. Here, we examined the oviposition responses of Aedes aegypti exposed to various mosquito predator pictures. Gravid females were presented with equal opportunities to oviposit in two cups with predator images [Toxorhynchites splendens—TXI, Goldfish (Carassius auratus)—small (SFI) and large (LFI) and Tx. splendens + Goldfish—TXFI] and two others without pictures. Differences in egg deposition were examined between sites with and without these images. When given a chance to oviposit in cups with and without TXI, Ae. aegypti females were similarly attracted to both sites. When provided an opportunity to oviposit in cups displaying pictures of fish (SFI or LFI) and blank cups, egg deposition rates were much lower in the fish picture sites. Females showed a preference for blank cups over TXFI for egg deposition. They also equally avoided cups with pictures of fish, regardless of the size of the picture. Our results indicate that the presence of images of goldfish and their association with Tx. larvae significantly reduced egg deposition by Ae. aegypti, and this was not the case with the predatory larvae alone. The observations that the images of natural predators can repel gravid females of a dengue vector provide novel possibilities to develop effective and inexpensive alternative tools to harmful insecticides

    Exposure of a Dengue Vector to Tea and Its Waste: Survival, Developmental Consequences, and Significance for Pest Management

    Get PDF
    Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticidesthe principal strategy against mosquito vectorshas been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution

    Evaluation of sublethal effects of ipomoea cairica linn. extract on life history traits of dengue vectors

    No full text
    Plant derived insecticides have considerable potential for mosquito control because these products are safer than conventional insecticides. This study aimed to investigate sublethal activities of Ipomoea carica or railway creeper crude acethonilic extract against life history trait of dengue vectors, Aedes albopictus and Aedes aegypti. The late third instar larvae of Ae. albopictus and Ae. aegypti were exposed to a sublethal dose at LC50 and larvae that survived were further cultured. Overall, Ipomea cairica crude extracts affected the whole life history of both Aedes species. The study demonstrated significantly lower egg production (fecundity) and eggs hatchability (fertility) in Ae. albopictus. The sublethal dose of crude extracts reduced significantly the width of larval head capsule and the wing length of both sexes in both Aedes species. The significance of sublethal effects of I. cairica against Aedes mosquitoes was an additional hallmark to demonstrate further activity of this plant despite its direct toxicity to the larvae. The reduced reproductive capacity as well as morphological and physiological anomalies are some of the effects that make I. cairica a potential candidate to be used as a new plant-based insecticide to control dengue vectors

    Discarded cigarette butts attract females and kill the progeny of aedes albopictus

    No full text
    Discarded cigarette butts (DCB) waste occurs worldwide, pollutes landscapes, is unsightly, and results in added debris removal costs. There is, therefore, a great deal of current interest in making use of DCBs in beneficial ways. Despite evidence that DCBs are harmful to water fleas (Daphnia magna), which breed in aquatic environments as do mosquito larvae, their impact on dengue vectors is unknown. We examined whether Aedes albopictus alters its ovipositional responses, larval eclosion, and development in response to presence of DCBs in its habitats. We found oviposition activity in DCB-treated water similar to that of control water and that ovipositional activity in DCB solutions steadily increased over time as those solutions aged to 10 days. Larval eclosion was initially suppressed on day 1 in DCB solution, but increased thereafter to levels similar to control larval eclosion rates. The DCB-water solutions produced significantly higher mortality in both 1st and 2nd instars over control larvae for several days after initial exposure. Mortality rates decreased sharply 3 to 5 days postexposure as DCBs continued to decompose. We found increased survival rates during late development, but daily input of fresh DCBs prevented most young larvae from completing development. Taken together, these observations suggest that decomposing did not deter gravid Ae. albopictus females from ovipositing in treated containers and that DCB solutions had larvicidal effects on early instars. Our results are discussed in the context of DCB use to control container-breeding Ae. albopictus, a competent dengue vector in Asia and other parts of the world

    Physical characteristics and reproductive performance in Aedes (Diptera: Culicidae)

    No full text
    Body size is a physical factor of crucial importance underlying important traits of the reproductive dynamics of both sexes in mosquitoes. Most studies on the influence of body size in mating success of dengue vectors addressed sperm transfer to females and did not consider egg production, a prerequisite for population maintenance; male body size impact on reproduction has attracted little research interest with respect to sterile insect technique. In experiments involving differently sized adults, we examined whether the body size of the mates is a source of variation in reproductive outcome in Aedes aegypti. In the absence of male partners, large females (LF) showed better fecundity than small females (SF). In intraclass mating trials, egg production was much greater in largesized than smallsized pairs. There were comparable fecundities in large females mated with small males and large pairs. [SF•SM] and [SF•LM] pairs showed equivalent fecundity. Nonmating did not result in the production of viable eggs by either small or large females. We also observed that eggs produced by largesized females mated with small males had better hatching success than those from either small or large pairs. Mating between small females and large males resulted in poor egg viability
    corecore