20 research outputs found

    Tracing potential energy surfaces of electronic excitations via their transition origins: application to Oxirane

    Get PDF
    We show that the transition origins of electronic excitations identified by quantified natural transition orbital (QNTO) analysis can be employed to connect potential energy surfaces (PESs) according to their character across a widerange of molecular geometries. This is achieved by locating the switching of transition origins of adiabatic potential surfaces as the geometry changes. The transition vectors for analysing transition origins are provided by linear response time-dependent density functional theory (TDDFT) calculations under the Tamm-Dancoff approximation. We study the photochemical CO ring opening of oxirane as an example and show that the results corroborate the traditional Gomer-Noyes mechanism derived experimentally. The knowledge of specific states for the reaction also agrees well with that given by previous theoretical work using TDDFT surface-hopping dynamics that was validated by high-quality quantum Monte Carlo calculations. We also show that QNTO can be useful for considerably larger and more complex systems: by projecting the excitations to those of a reference oxirane molecule, the approach is able to identify and analyse specific excitations of a trans-2,3-diphenyloxirane molecule.Comment: 14 pages, 12 figure

    Photophysics and photochemistry of DNA molecules : electronic excited states leading to thymine dimerization

    Get PDF
    We combine quantified natural transition orbital (QNTO) analysis with large-scale linear response time-dependent DFT (TDDFT) to investigate the concerted [2 + 2] thymine dimerisation reaction. This reaction is a main cause of UV-light induced damage to DNA, but its mechanism has remained poorly understood. QNTO analysis enables the electronic excitations of a molecule to be identified on the basis of their transition origins across a wide range of molecular geometries, allowing the participating excited states to be identified relatively straightforwardly. We identify a barrierless funnel that is responsible for the ultrafast reaction previously indicated in experiments. The reactive state is found to have crossings with several bright excited states, revealing how the initially populated bright states can decay rapidly to the reactive state. We also examine the contribution of environmental factors such as inclusion of the DNA backbone, which can affect the conformation of the potential energy surfaces of the relevant states

    Taming the 3rd order cumulant

    No full text
    Produced data set, and Python code used to produce the GBOM scan outlined within the text

    Opening the Density-Functional Theory Black Box: a Collection of Pedagogic Jupyter Notebooks

    No full text
    Density-Functional Theory (DFT) is indubitably the most popular and among the most successful approaches for approximately solving the many-electron Schrödinger equation. The level of understanding on the part of both researchers and students using DFT, however, is lacking given the availability of black box software. The present work addresses this knowledge gap by providing three Jupyter notebooks, easily accessible through the Google Colaboratory (GitHub repository: https://github.com/tjz21/DFT_PIB_Code), that provide a short skirmish with the fundamentals of DFT through a particle in a box-type model system. These notebooks were tested in conjunction with a problem worksheet in a graduate-level quantum chemistry course; pre- and post-activity survey results reveal largely positive reactions to this implementation and sustained enthusiasm for the subject

    The Effect of Ions on the Optical Absorption Spectra of Aqueously Solvated Chromophores

    No full text
    In the condensed phase, ions often create heterogeneous local environments around a solute, which may impart chemical reactivity or perturbations to physico-chemical properties. Although the former has been the subject of some study, the latter - particularly as is pertains to optical absorption spectroscopy - is much less understood. In this work, the computed UV-Vis absorption spectrum is examined for the aqueously solvated chromophore anion of green fluorescent protein for different local ion configurations. The strong ability of water to screen the ions from the chromophore results in little change in excitation energy compared to a purely aqueous environment. However, upon forming a contact ion pair with a sodium ion at either of the two electronegative oxygen sites of the chromophore, there is a spectral shift to either higher or lower energies. Surprisingly, our analysis suggests that the cause of the spectral shift is dominated not by the electrostatic presence of the ion, but instead by ion disruption of the hydrogen bond network at the oxygen contact ion pair site
    corecore