473 research outputs found
Theortetical Models of Extrasolar Giant Planets
The recent discoveries of giant planets around nearby stars have galvanized
the planetary science community, astronomers, and the public at large. Since
{\it direct} detection is now feasible, and is suggested by the recent
acquisition of Gl229 B, it is crucial for the future of extrasolar planet
searches that the fluxes, evolution, and physical structure of objects from
Saturn's mass to 15 Juipter masses be theoretically investigated. We discuss
our first attempts to explore the characteristics of extrasolar giant planets
(EGPs), in aid of both NASA's and ESA's recent plans to search for such planets
around nearby stars.Comment: LaTeX, using espcrc2.sty style files from Elsevier, 10 pages, 4
figures, to be published in the Proceedings of the International Conference
on "Sources and Detection of Dark Matter in the Universe," ed. by D. Sanders
et al. (Nuclear Physics B Supplement), 199
Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets.
The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity makes them ideal candidates for therapeutic and diagnostic applications. However, the poor stability and high production cost of antibodies have prompted exploration of a variety of synthetic materials capable of specific molecular recognition. Unfortunately, it remains a fundamental challenge to create a chemically diverse population of protein-like, folded synthetic nanostructures with defined molecular conformations in water. Here we report the synthesis and screening of combinatorial libraries of sequence-defined peptoid polymers engineered to fold into ordered, supramolecular nanosheets displaying a high spatial density of diverse, conformationally constrained peptoid loops on their surface. These polyvalent, loop-functionalized nanosheets were screened using a homogeneous Förster resonance energy transfer (FRET) assay for binding to a variety of protein targets. Peptoid sequences were identified that bound to the heptameric protein, anthrax protective antigen, with high avidity and selectivity. These nanosheets were shown to be resistant to proteolytic degradation, and the binding was shown to be dependent on the loop display density. This work demonstrates that key aspects of antibody structure and function-the creation of multivalent, combinatorial chemical diversity within a well-defined folded structure-can be realized with completely synthetic materials. This approach enables the rapid discovery of biomimetic affinity reagents that combine the durability of synthetic materials with the specificity of biomolecular materials
Ba3Ga3N5 - A Novel Host Lattice for Eu2+ - Doped Luminescent Materials with Unexpected Nitridogallate Substructure
The alkaline earth nitridogallate Ba3Ga3N5 was synthesized from the elements in a sodium flux at 760°C utilizing weld shut tantalum ampules. The crystal structure was solved and refined on the basis of single-crystal X-ray diffraction data. Ba3Ga3N5 (space group C2/c (No. 15), a = 16.801(3), b = 8.3301(2), c = 11.623(2) Å, β = 109.92 (3)°, Z = 8) contains a hitherto unknown structural motif in nitridogallates, namely, infinite strands made up of GaN4 tetrahedra, each sharing two edges and at least one corner with neighboring GaN4 units. There are three Ba2+ sites with coordination numbers six or eight, respectively, and one Ba2+ position exhibiting a low coordination number 4 corresponding to a distorted tetrahedron. Eu2+ - doped samples show red luminescence when excited by UV irradiation at room temperature. Luminescence investigations revealed a maximum emission intensity at 638 nm (FWHM =2123 cm−1). Ba3Ga3N5 is the first nitridogallate for which parity allowed broadband emission due to Eu2+ - doping has been found. The electronic structure of both Ba3Ga3N5 as well as isoelectronic but not isostructural Sr3Ga3N5 was investigated by DFT methods. The calculations revealed a band gap of 1.53 eV for Sr3Ga3N5 and 1.46 eV for Ba3Ga3N5
Sterols sense swelling in lipid bilayers
In the mimetic membrane system of phosphatidylcholine bilayers, thickening
(pre-critical behavior, anomalous swelling) of the bilayers is observed, in the
vicinity of the main transition, which is non-linear with temperature. The
sterols cholesterol and androsten are used as sensors in a time-resolved
simultaneous small- and wide angle x-ray diffraction study to investigate the
cause of the thickening. We observe precritical behavior in the pure lipid
system, as well as with sterol concentrations less than 15%. To describe the
precritical behavior we introduce a theory of precritical phenomena.The good
temperature resolution of the data shows that a theory of the influence of
fluctuations needs modification. The main cause of the critical behavior
appears to be a changing hydration of the bilayer.Comment: 11 pages, 7 ps figures included, to appear in Phys.Rev.
Single-molecule experiments in biological physics: methods and applications
I review single-molecule experiments (SME) in biological physics. Recent
technological developments have provided the tools to design and build
scientific instruments of high enough sensitivity and precision to manipulate
and visualize individual molecules and measure microscopic forces. Using SME it
is possible to: manipulate molecules one at a time and measure distributions
describing molecular properties; characterize the kinetics of biomolecular
reactions and; detect molecular intermediates. SME provide the additional
information about thermodynamics and kinetics of biomolecular processes. This
complements information obtained in traditional bulk assays. In SME it is also
possible to measure small energies and detect large Brownian deviations in
biomolecular reactions, thereby offering new methods and systems to scrutinize
the basic foundations of statistical mechanics. This review is written at a
very introductory level emphasizing the importance of SME to scientists
interested in knowing the common playground of ideas and the interdisciplinary
topics accessible by these techniques. The review discusses SME from an
experimental perspective, first exposing the most common experimental
methodologies and later presenting various molecular systems where such
techniques have been applied. I briefly discuss experimental techniques such as
atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers
(MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I
then present several applications of SME to the study of nucleic acids (DNA,
RNA and DNA condensation), proteins (protein-protein interactions, protein
folding and molecular motors). Finally, I discuss applications of SME to the
study of the nonequilibrium thermodynamics of small systems and the
experimental verification of fluctuation theorems. I conclude with a discussion
of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond.
Matt
Heart re-transplantation in Eurotransplant
Internationally 3% of the donor hearts are distributed to re-transplant patients. In Eurotransplant, only patients with a primary graft dysfunction (PGD) within 1 week after heart transplantation (HTX) are indicated for high urgency listing. The aim of this study is to provide evidence for the discussion on whether these patients should still be allocated with priority. All consecutive HTX performed in the period 1981-2015 were included. Multivariate Cox' model was built including: donor and recipient age and gender, ischaemia time, recipient diagnose, urgency status and era. The study population included 18 490 HTX, of these 463 (2.6%) were repeat transplants. The major indications for re-HTX were cardiac allograft vasculopathy (CAV) (50%), PGD (26%) and acute rejection (21%). In a multivariate model, compared with first HTX hazards ratio and 95% confidence interval for repeat HTX were 2.27 (1.83-2.82) for PGD, 2.24 (1.76-2.85) for acute rejection and 1.22 (1.00-1.48) for CAV (P < 0.0001). Outcome after cardiac re-HTX strongly depends on the indication for re-HTX with acceptable outcomes for CAV. In contrast, just 47.5% of all hearts transplanted in patients who were re-transplanted for PGD still functioned at 1-month post-transplant. Alternative options like VA-ECMO should be first offered before opting for acute re-transplantation
Revisiting Politicide: State Annihilation in Israel/Palestine
State annihilation is a persistent concern in Israel/Palestine. While the specter of Israel’s destruction increasingly haunts Israeli public political debates, the actual materialization of Palestinian statehood seems to be permanently suspended, caught in an ever-protracted process of state-building. The current paper claims that to understand the unfolding of the discursive formations, as well as the spatial dimensions of conflict and control in Israel/Palestine, we should explicate the workings of the processes of politicide. Politicide, in this regard, denotes the eradication of the political existence of a group and sabotaging the turning of a community of people into a polity. This analysis suggests that the insistence that the State of Israel is under threat of extinction should be understood as a speech act, a performative reiteration, which allows for the securitization of Israeli rule in the occupied Palestinian territory, a securitization which then serves to rationalize the ongoing concrete politicide of the Palestinians. Elaborating on the concept of politicide, and diverging from defining it solely through the use of brute violence, this examination suggests that what is often overlooked in discussions of politicide are the seemingly more benign means of its implementation, the micro-power mechanisms of spatial control, prohibitions and regulations
Applications of CRISPR–Cas systems in neuroscience
Genome-editing tools, and in particular those based on CRISPR-Cas (clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein) systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in almost any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal models and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03
Intraductal papillary mucinous neoplasia (IPMN) of the pancreas: the pivotal role of MRI for the differential diagnosis and the choice of treatment
Macrocystic pancreatic tumors seem to play an important role among neoplastic lesions of the pancreas as they sometimes either show a malignant potential or they already have neoplastic foci inside the cystic tumor. Differential diagnosis is a key factor in comparison with other cystic tumors which are not malignant as Serous Cystic Tumors (SCTs) and Mucinous Cystic Tumors (MCTs). So diagnostic imaging has become more and more important. Since May 2009 we have observed more than 200 patients with cystic lesions of the pancreas. All the patients underwent a CholangioPancreato MagneticResonance (CPMR) after an Ultrasound and/or a CT scan. Then we excluded from our study solid lesions, pseudocysts and tumors with clear signs of malignancy. CPMR was sometimes performed also using a secretine test. Finally 51 patients were evaluated and underwent a follow up programme till now. Among these patients we found 34 Intraductal Papillary Mucinous Neoplasia (IPMN), 7 MCTs and 10 SCTs. As we know that all SCTs show a lobulated septate pattern, differential diagnosis with IPMN is mandatory in order to give to the patient the treatment of choice. CPMR revealed in 32 out of 34 IPMN patients a communication between the lesion and the main pancreatic duct (MPD); so this sign, which is patognomonic of IPMN neoplasia, confirmed the diagnosis. All lesions > than 3 cm were resected by surgery (4 MCTs and 3 IPMN). Definitive histology always confirmed preoperative diagnostic imaging. Now the patients are all disease free at follow up. The other 44 patients undergo CPMR every 6 months following a “wait and see” policy. CPMR seems to be fundamental for the diagnostic screening of IPMN. This is a simple, safe and non invasive procedure which allows an early diagnosis and a better chance of cure for this kind of patients
- …
