3,608 research outputs found

    Possibility of the new type phase transition

    Full text link
    The scalar field theory and the scalar electrodynamics quantized in the flat gap are considered. The dynamical effects arising due to the boundary presence with two types of boundary conditions (BC) satisfied by scalar fields are studied. It is shown that while the Neumann BC lead to the usual scalar field mass generation, the Dirichlet BC give rise to the dynamical mechanism of spontaneous symmetry breaking. Due to the later, there arises the possibility of the new type phase transition from the normal to spontaneously broken phase. The decreasing in the characteristic size of the quantization region (the gap size here) and increasing in the temperature compete with each other, tending to transport the system in the spontaneously broken and in the normal phase, respectively. The system evolves with a combined parameter, simultaneously reflecting the change in temperature and in the size. As a result, at the critical value of this parameter there occurs the phase transition from the normal phase to the spontaneously broken one. In particular, the usual massless scalar electrodynamics transforms to the Higgs model

    Reduced brain activation during inhibitory control in children with COMT Val/Val genotype

    Full text link
    IntroductionBehavioral undercontrol is a well‐established risk factor for substance use disorder, identifiable at an early age well before the onset of substance use. However, the biological mechanistic structure underlying the behavioral undercontrol/substance use relationship is not well understood. The enzyme catechol O‐methyltransferase (COMT) catabolizes dopamine and norepinephrine in the prefrontal cortex and striatum, brain regions involved in behavioral control. The goal of this work was to investigate the association between genetic variation in COMT functioning and fronto‐striatal brain functioning during successful inhibitory control, a critical aspect of behavioral control.MethodsParticipants were 65 (22 female) 7–12 year olds who were genotyped for the functional COMT Val158Met (rs4680) single‐nucleotide polymorphism and underwent functional magnetic resonance imaging while performing a go/no‐go task. The majority of the sample (80%) had at least one parent with a history of alcohol use disorder and were thus at heightened risk for substance use disorders.ResultsThere was a significant main effect of genotype on brain activation in left and right putamen during successful versus failed inhibition and in right inferior frontal gyrus/insula during successful inhibition versus baseline. Follow‐up tests revealed that Met homozygotes had greater activation in each region relative to Val homozygotes.ConclusionsThese results are relevant for understanding how specific genes influence brain functioning related to underlying risk factors for substance use disorders and other disinhibitory psychopathologies.The goal of this work was to investigate the association between genetic variation in COMT functioning and fronto‐striatal brain functioning during inhibitory control, a critical aspect of behavioral control. Participants were 65 (22 female) 7–12 year olds who were genotyped for the functional COMT Val158Met (rs4680) single‐nucleotide polymorphism and underwent functional magnetic resonance imaging while performing a go/no‐go task. There was a significant main effect of genotype on brain activation in left and right putamen during successful versus failed inhibition and in right inferior frontal gyrus/insula during successful inhibition versus baseline; follow‐up tests revealed that Met homozygotes had greater activation in each region relative to Val homozygotes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135697/1/brb3577_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135697/2/brb3577.pd

    Frequency-Dependent Squeezing for Advanced LIGO

    Get PDF
    The first detection of gravitational waves by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 launched the era of gravitational wave astronomy. The quest for gravitational wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light is being used to improve the shot noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above 50\sim 50 Hz. Below this frequency, quantum back action, in the form of radiation pressure induced motion of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30Hz, using a 16m long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as "A+."Comment: 6 pages, 2 figures, to be published in Phys. Rev. Let

    A Keck/DEIMOS spectroscopic survey of the faint M31 satellites And IX, And XI, And XII, and And XIII

    Get PDF
    We present the first spectroscopic analysis of the faint M31 satellite galaxies, AndXI and AndXIII, and a reanalysis of existing spectroscopic data for two further faint companions, And IX and AndXII. By combining data obtained using the DEIMOS spectrograph mounted on the Keck II telescope with deep photometry from the Suprime-Cam instrument on Subaru, we have calculated global properties for the dwarfs, such as systemic velocities, metallicites and half-light radii.We find each dwarf to be very metal poor ([Fe/H] -2 both photometrically and spectroscopically, from their stacked spectrum), and as such, they continue to follow the luminosity-metallicity relationship established with brighter dwarfs. We are unable to resolve a dispersion for And XI due to small sample size and low S/N, but we set a one sigma upper limit of sigma-v <5 km/s. For And IX, And XII and And XIII we resolve velocity dispersions of v=4.5 (+3.4,-3.2), 2.6(+5.1,-2.6) and 9.7(+8.9,-4.5) km/s, and derive masses within the half light radii of 6.2(+5.3,-5.1)x10^6 Msun, 2.4 (+6.5,-2.4)x10^6 Msun and 1.1(+1.4,-0.7)x10^7 Msun respectively. We discuss each satellite in the context of the Mateo relations for dwarf spheroidal galaxies, and the Universal halo profiles established for Milky Way dwarfs (Walker et al. 2009). For both galaxies, this sees them fall below the Universal halo profiles of Walker et al. (2009). When combined with the findings of McConnachie & Irwin (2006a), which reveal that the M31 satellites are twice as extended (in terms of both half-light and tidal radii) as their Milky Way counterparts, these results suggest that the satellite population of the Andromeda system could inhabit halos that are significantly different from those of the Milky Way in terms of their central densities (abridged).Comment: 26 pages, 18 figures, MNRAS submitte

    Stress response function of a two-dimensional ordered packing of frictional beads

    Full text link
    We study the stress profile of an ordered two-dimensional packing of beads in response to the application of a vertical overload localized at its top surface. Disorder is introduced through the Coulombic friction between the grains which gives some indeterminacy and allows the choice of one constrained random number per grain in the calculation of the contact forces. The so-called `multi-agent' technique we use, lets us deal with systems as large as 1000×10001000\times1000 grains. We show that the average response profile has a double peaked structure. At large depth zz, the position of these peaks grows with czcz, while their widths scales like Dz\sqrt{Dz}. cc and DD are analogous to `propagation' and `diffusion' coefficients. Their values depend on that of the friction coefficient μ\mu. At small μ\mu, we get c0cμc_0-c \propto \mu and DμβD \propto \mu^\beta, with β2.5\beta \sim 2.5, which means that the peaks get closer and wider as the disorder gets larger. This behavior is qualitatively what was predicted in a model where a stochastic relation between the stress components is assumed.Comment: 7 pages, 7 figures, accepted version to Europhys. Let

    The Corona Australis star formation complex is accelerating away from the Galactic plane

    Full text link
    We study the kinematics of the recently discovered Corona Australis (CrA) chain of clusters by examining the 3D space motion of its young stars using Gaia DR3 and APOGEE-2 data. While we observe linear expansion between the clusters in the Cartesian XY directions, the expansion along Z exhibits a curved pattern. To our knowledge, this is the first time such a nonlinear velocity-position relation has been observed for stellar clusters. We propose a scenario to explain our findings, in which the observed gradient is caused by stellar feedback, accelerating the gas away from the Galactic plane. A traceback analysis confirms that the CrA star formation complex was located near the central clusters of the Scorpius Centaurus (Sco-Cen) OB association 10-15 Myr ago. It contains massive stars and thus offers a natural source of feedback. Based on the velocity of the youngest unbound CrA cluster, we estimate that a median number of about two supernovae would have been sufficient to inject the present-day kinetic energy of the CrA molecular cloud. This number agrees with that of recent studies. The head-tail morphology of the CrA molecular cloud further supports the proposed feedback scenario, in which a feedback force pushed the primordial cloud from the Galactic north, leading to the current separation of 100 pc from the center of Sco-Cen. The formation of spatially and temporally well-defined star formation patterns, such as the CrA chain of clusters, is likely a common process in massive star-forming regions.Comment: Accepted for publication as a Letter in Astronomy and Astrophysic

    The Cosmic Horseshoe: Discovery of an Einstein Ring around a Giant Luminous Red Galaxy

    Get PDF
    We report the discovery of an almost complete Einstein ring of diameter 10" in Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5). Spectroscopic data from the 6m telescope of the Special Astrophysical Observatory reveals that the deflecting galaxy has a line-of-sight velocity dispersion in excess of 400 km/s and a redshift of 0.444, whilst the source is a star-forming galaxy with a redshift of 2.379. From its color and luminosity, we conclude that the lens is an exceptionally massive Luminous Red Galaxy (LRG) with a mass within the Einstein radius of 5 x 10^12 solar masses. This remarkable system provides a laboratory for probing the dark matter distribution in LRGs at distances out to 3 effective radii, and studying the properties of high redshift star-forming galaxies.Comment: ApJ (Letters), in pres

    The Masses of the Milky Way and Andromeda galaxies

    Full text link
    We present a family of robust tracer mass estimators to compute the enclosed mass of galaxy haloes from samples of discrete positional and kinematical data of tracers, such as halo stars, globular clusters and dwarf satellites. The data may be projected positions, distances, line of sight velocities or proper motions. Forms of the estimator tailored for the Milky Way galaxy and for M31 are given. Monte Carlo simulations are used to quantify the uncertainty as a function of sample size. For the Milky Way, the satellite sample consists of 26 galaxies with line-of-sight velocities. We find that the mass of the Milky Way within 300 kpc is ~ 0.9 x 10^12 solar masses assuming velocity isotropy. However, the mass estimate is sensitive to the anisotropy and could plausibly lie between 0.7 - 3.4 x 10^12 solar masses. Incorporating the proper motions of 6 Milky Way satellites into the dataset, we find ~ 1.4 x 10^12 solar masses. The range here if plausible anisotropies are used is still broader, from 1.2 - 2.7 x 10^12 solar masses. For M31, there are 23 satellite galaxies with measured line-of-sight velocities, but only M33 and IC 10 have proper motions. We use the line of sight velocities and distances of the satellite galaxies to estimate the mass of M31 within 300 kpc as ~ 1.4 x 10^12 solar masses assuming isotropy. There is only a modest dependence on anisotropy, with the mass varying between 1.3 -1.6 x 10^12 solar masses. Given the uncertainties, we conclude that the satellite data by themselves yield no reliable insights into which of the two galaxies is actually the more massive.Comment: 15 pages, submitted to MNRA

    Non-universal Soft Parameters in Brane World and the Flavor Problem in Supergravity

    Get PDF
    We consider gravity mediated supersymmetry (SUSY) breaking in 5D spacetime with two 4D branes B1 and B2 separated in the extra dimension. Using an off-shell 5D supergravity (SUGRA) formalism, we argue that the SUSY breaking scales could be non-universal even at the fundamental scale in a brane world setting, since SUSY breaking effects could be effectively localized. As an application, we suggest a model in which the two light chiral MSSM generations reside on B1, while the third generation is located on B2, and the Higgs multiplets as well as gravity and gauge multiplets reside in the bulk. For SUSY breaking of the order of 10--20 TeV caused by a hidden sector localized at B1, the scalars belonging to the first two generations can become sufficiently heavy to overcome the SUSY flavor problem. SUSY breaking on B2 from a different localized hidden sector gives rise to the third generation soft scalar masses of the order of 1 TeV. Gaugino masses are also of the order of 1 TeV if the size of the extra dimension is 1016\sim 10^{-16} GeV1{\rm GeV}^{-1}. As in 4D effective supersymmetric theory, an adjustment of TeV scale parameters is needed to realize the 100 GeV electroweak symmetry breaking scale.Comment: 1+22 pages, Version to appear in PRD with additional comments and reference
    corecore